...
首页> 外文期刊>Physical review >Pressure and electric field dependence of quasicrystalline electronic states in 30° twisted bilayer graphene
【24h】

Pressure and electric field dependence of quasicrystalline electronic states in 30° twisted bilayer graphene

机译:拟卡内电子态在30°扭曲双层石墨烯中的压力和电场依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

A 30 twisted bilayer graphene demonstrates the quasicrystalline electronic states with 12-fold symmetry. These states are, however, far away from the Fermi level, which makes conventional Dirac fermion behavior dominating the low-energy spectrum in this system. By using a tight-binding approximation, we study the effect of external pressure and electric field on the quasicrystalline electronic states. Our results show that, by applying the pressure perpendicular to the graphene plane, one can push the quasicrystalline electronic states towards the Fermi level. Then, the electron or hole doping on the order of ~4 × 10~(14) cm~(-2) is sufficient for the coincidence of the Fermi level with these quasicrystalline states. Moreover, our paper indicates that applying the electric field perpendicular to the graphene plane can destroy the 12-fold symmetry of these states, and it is easier to reach this in the conduction band than in the valence band. Importantly, the application of the pressure can partially recover the 12-fold symmetry of these states against the electric field. We propose a hybridization picture that can explain all these phenomena.
机译:30扭曲的双层石墨烯展示了具有12倍对称性的拟晶体电子状态。然而,这些状态远离费米水平,这使得传统的DIRAC FERMION行为在该系统中占据了低能量谱。通过使用紧密结合的近似,我们研究了外压力和电场对拟卡内电子状态的影响。我们的结果表明,通过将垂直于石墨烯平面的压力施加,可以将拟晶体电子状态推向费米水平。然后,掺杂约4×10〜(14)cm〜(-2)的电子或孔掺杂足以使FERMI水平的重合与这些拟卡内态。此外,我们的论文表明,垂直于石墨烯平面施加电场可以破坏这些状态的12倍对称性,并且在导通带中比在价带中更容易达到它。重要的是,压力的施加可以部分地回收这些状态对电场的12倍对称性。我们提出了一个杂交的图片,可以解释所有这些现象。

著录项

  • 来源
    《Physical review》 |2020年第4期|045113.1-045113.7|共7页
  • 作者单位

    Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China Institute for Molecules and Materials Radboud University Heijendaalseweg 135 NL-6525 AJ Nijmegen Netherlands;

    Institute for Molecules and Materials Radboud University Heijendaalseweg 135 NL-6525 AJ Nijmegen Netherlands;

    Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China Institute for Molecules and Materials Radboud University Heijendaalseweg 135 NL-6525 AJ Nijmegen Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号