...
首页> 外文期刊>Plant and Soil >Greenhouse gas fluxes respond to different N fertilizer types due to altered plant-soil-microbe interactions
【24h】

Greenhouse gas fluxes respond to different N fertilizer types due to altered plant-soil-microbe interactions

机译:由于植物-土壤-微生物相互作用的改变,温室气体通量对不同的氮肥类型有反应

获取原文
获取原文并翻译 | 示例
           

摘要

The application of inorganic nitrogen (N) fertilizers strongly influences the contribution of agriculture to the greenhouse effect, especially by potentially increasing emissions of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) from soils. The present microcosm-study investigates the effect of different forms of inorganic N fertilizers on greenhouse gas (GHG) emissions from two different agricultural soils. The relationship between greenhouse gas emissions and soil microbial communities, N transformation rates and plant (Hordeum vulgare L. cv. Morex) growth were investigated. Repeated N fertilization led to increased N2O emissions. In a parallel survey of functional microbial population dynamics we observed a stimulation of bacterial and archaeal ammonia oxidisers accompanied with these N2O emissions. The ratio of archaeal to bacterial ammonium monooxygenase subunit A (amoA) gene copies (data obtained from Inselsbacher et al., 2010) correlated positively with N2O fluxes, which suggests a direct or indirect involvement of archaea in N2O fluxes. Repeated N fertilization also stimulated methane oxidation, which may also be related to a stimulation of ammonia oxidizers. The fertilizer effects differed between soil types: In the more organic Niederschleinz soil N-turnover rates increased more strongly after fertilization, while in the sandy Purkersdorf soil plant growth and soil respiration were accelerated depending on fertilizer N type. Compared to addition of NH 4 + and NO 3 − , addition of NH4NO3 fertilizer resulted in the largest increase in global warming potential as a summary indicator of all GHG related effects. This effect resulted from the strongest increase of both N2O and CO2 emission while plant growth was not equally stimulated, compared to e.g. KNO3 fertilization. In order to decrease N losses from agricultural ecosystems and in order to minimize soil derived global warming potential, this study points to the need for interdisciplinary investigations of the highly complex interactions within plant-soil-microbe-atmosphere systems. By understanding the microbial processes underlying fertilizer effects on GHG emissions the N use efficiency of crops could be refined.
机译:无机氮肥的施用强烈影响农业对温室效应的贡献,尤其是潜在地增加一氧化二氮(N2 O),二氧化碳(CO2 )和甲烷(CH4)的排放量)。本微观研究研究了不同形式的无机氮肥对两种不同农业土壤的温室气体(GHG)排放的影响。研究了温室气体排放与土壤微生物群落,氮转化率和植物(大麦(Hordeum vulgare L. cv。Morex))生长之间的关系。反复施氮导致N2O排放增加。在对功能微生物种群动态的平行调查中,我们观察到细菌和古细菌氨氧化剂的刺激伴随着这些N2O的排放。细菌与细菌铵单加氧酶亚基A(amoA)基因拷贝的比例(数据来自Inselsbacher等,2010)与N2O流量呈正相关,这表明古细菌直接或间接地参与N2 O通量。重复施氮也刺激了甲烷的氧化,这也可能与氨氧化剂的刺激有关。肥料的作用因土壤类型的不同而不同:施肥后,在有机性更高的Niederschleinz土壤中,氮的周转率增加更明显,而在沙丘的Purkersdorf中,土壤的生长和土壤呼吸取决于肥料的氮类型而加快。与添加NH 4 + 和NO 3 -相比,添加NH4 NO3 肥料导致全球变暖潜力的增加最大作为所有温室气体相关影响的汇总指标。这种影响是由N2O和CO2排放量的最大增加所致,而与例如硝酸钾施肥为了减少农业生态系统中的氮损失,并最大程度减少土壤引起的全球变暖潜力,本研究指出,需要对植物-土壤-微生物-大气系统内高度复杂的相互作用进行跨学科研究。通过了解肥料对温室气体排放的影响的微生物过程,可以改善农作物的氮利用效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号