首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Aero-structural optimization of shape memory alloy-based wing morphing via a class/shape transformation approach
【24h】

Aero-structural optimization of shape memory alloy-based wing morphing via a class/shape transformation approach

机译:通过类/形状变换方法优化基于形状记忆合金的机翼变形的航空结构

获取原文
获取原文并翻译 | 示例
           

摘要

Because of the continuous variability of the ambient environment, all aircraft would benefit from an in situ optimized wing. This paper proposes a method for preliminary design of feasible morphing wing configurations that provide benefits under disparate flight conditions but are also each structurally attainable via localized active shape change operations. The controlled reconfiguration is accomplished in a novel manner through the use of shape memory alloy embedded skin components. To address this coupled optimization problem, multiple sub-optimizations are required. In this work, the optimized cruise and landing airfoil configurations are determined in addition to the shape memory alloy actuator configuration required to morph between the two. Thus, three chained optimization problems are addressed via a common genetic algorithm. Each analysis-driven optimization considers the effects of both the deformable structure and the aerodynamic loading experienced by the wing. Aerodynamic considerations are addressed via a two-dimensional panel method and each airfoil shape is generated by the so-called class/shape transformation methodology. It is shown that structurally and aerodynamically feasible morphing of a modern high-performance sailplane wing produces a 22% decrease in weight and significantly increases stall angle of attack and lift at the same landing velocity when compared to a baseline design that employs traditional control surfaces.
机译:由于周围环境的不断变化,所有飞机都会受益于原位优化的机翼。本文提出了一种可行的变形机翼构型的初步设计方法,该方法可在不同的飞行条件下带来好处,但也可通过局部主动形状改变操作在结构上实现。通过使用形状记忆合金嵌入的皮肤组件,以新颖的方式完成了受控的重新配置。为了解决这个耦合的优化问题,需要多个子优化。在这项工作中,除了在两者之间变形所需的形状记忆合金执行器配置之外,还确定了优化的巡航和降落机翼配置。因此,通过通用遗传算法解决了三个链式优化问题。每个分析驱动的优化都考虑了可变形结构和机翼承受的空气动力负荷的影响。通过二维面板方法解决了空气动力学方面的考虑,每种机翼形状都通过所谓的类别/形状变换方法生成。结果表明,与采用传统控制面的基线设计相比,现代高性能帆翼的结构和空气动力学可行变形使重量减轻了22%,并且在相同着陆速度下显着增加了失速攻角和升力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号