...
首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Theoretical-experimental study of shock wave-assisted metal forming process using a diaphragmless shock tube
【24h】

Theoretical-experimental study of shock wave-assisted metal forming process using a diaphragmless shock tube

机译:无隔膜减振管的冲击波辅助金属成形过程的理论实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

The use of high-velocity sheet-forming techniques where the strain rates are in excess of 10~2/s can help us solve many problems that are difficult to overcome with traditional metal-forming techniques. In this investigation, thin metallic plates/foils were subjected to shock wave loading in the newly developed diaphragmless shock tube. The conventional shock tube used in the aerodynamic applications uses a metal diaphragm for generating shock waves. This method of operation has its own disadvantages including the problems associated with repeatable and reliable generation of shock waves. Moreover, in industrial scenario, changing metal diaphragms after every shot is not desirable. Hence, a diaphragmless shock tube is calibrated and used in this study. Shock Mach numbers up to 3 can be generated with a high degree of repeatability (±4 per cent) for the pressure jumps across the primary shock wave. The shock Mach number scatter is within ±1.5 per cent. Copper, brass, and aluminium plates of diameter 60 mm and thickness varying from 0.1 to 1 mm are used. The plate peak over-pressures ranging from 1 to 10 bar are used. The midpoint deflection, circumferential, radial, and thickness strains are measured and using these, the Von Mises strain is also calculated. The experimental results are compared with the numerical values obtained using finite element analysis. The experimental results match well with the numerical values. The plastic hinge effect was also observed in the finite element simulations. Analysis of the failed specimens shows that aluminium plates had mode I failure, whereas copper plates had mode II failure.
机译:使用应变率超过10〜2 / s的高速片材成形技术可以帮助我们解决许多传统金属成形技术难以克服的问题。在这项研究中,薄金属板/箔在新开发的无隔膜减震管中承受了冲击波的载荷。空气动力学应用中使用的传统减震管使用金属膜片产生冲击波。这种操作方法有其自身的缺点,包括与可重复和可靠地产生冲击波有关的问题。此外,在工业场景中,不希望在每次注射后更换金属膜片。因此,本研究校准并使用了无隔膜减震管。对于主冲击波上的压力跳跃,可以产生高达3的冲击马赫数,并具有高度的可重复性(±4%)。冲击马赫数散度在±1.5%以内。使用直径为60毫米,厚度从0.1到1毫米不等的铜,黄铜和铝板。使用的板峰过压范围为1至10 bar。测量中点挠曲,周向,径向和厚度应变,并使用这些应变来计算冯·米塞斯应变。将实验结果与使用有限元分析获得的数值进行比较。实验结果与数值吻合得很好。在有限元模拟中也观察到塑性铰效应。对失效样品的分析表明,铝板具有I型失效,而铜板具有II型失效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号