...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein
【24h】

Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein

机译:FNR调节蛋白中的半胱氨酸过硫化物连接的[2Fe-2S]和半胱氨酸连接的[4Fe-4S]簇之间可逆循环

获取原文
获取原文并翻译 | 示例
           

摘要

Fumarate and nitrate reduction (FNR) regulatory proteins are O_2-sensing bacterial transcription factors that control the switch between aerobic and anaerobic metabolism. Under anaerobic conditions [4Fe-4S]~(2+)-FNR exists as a DNA-binding homodimer. In response to elevated oxygen levels, the [4Fe-4S]~(2+) cluster undergoes a rapid conversion to a [2Fe-2S]~(2+) cluster, resulting in a di-mer-to-monomer transition and loss of site-specific DNA binding. In this work, resonance Raman and UV-visible absorption/CD spec-troscopies and MS were used to characterize the interconversion between [4Fe-4S]~(2+) and [2Fe-2S]~(2+) clusters in Escherichia coli FNR. Selective ~(34)S labeling of the bridging sulfides in the [4Fe-4S]~(2+) cluster-bound form of FNR facilitated identification of resonantly enhanced Cys~(32)S-~(34)S stretching modes in the resonance Raman spectrum of the O_2-exposed [2Fe-2S]~(2+) cluster-bound form of FNR. This result indicates O_2-induced oxidation and retention of bridging sulfides in the form of [2Fe-2S]~(2+) cluster-bound cysteine persulfides. MS also demonstrates that multiple cysteine persul-fides are formed on O_2 exposure of [4Fe-4S]~(2+)-FNR. The [4Fe-4S]~(2+) cluster in FNR can also be regenerated from the cysteine persul-fide-coordinated [2Fe-2S]~(2+) cluster by anaerobic incubation with DTT and Fe~(2+) ion in the absence of exogenous sulfide. Resonance Raman data indicate that this type of cluster conversion involving sulfide oxidation is not unique to FNR, because it also occurs in O_2-exposed forms of O_2-sensitive [4Fe-4S] clusters in radical S-adeno-sylmethionine enzymes. The results provide fresh insight into the molecular mechanism of O_2 sensing by FNR and iron-sulfur cluster conversion reactions in general, and suggest unique mechanisms for the assembly or repair of biological [4Fe-4S] clusters.
机译:富马酸酯和硝酸盐还原(FNR)调节蛋白是O_2敏感的细菌转录因子,可控制有氧代谢和厌氧代谢之间的转换。在厌氧条件下,[4Fe-4S]〜(2 +)-FNR以结合DNA的同型二聚体形式存在。由于氧含量升高,[4Fe-4S]〜(2+)团簇迅速转变为[2Fe-2S]〜(2+)团簇,导致二聚体向单体的转变和损失位点特异性DNA结合在这项工作中,共振拉曼光谱和紫外可见吸收/ CD光谱和质谱用于表征大肠杆菌中[4Fe-4S]〜(2+)和[2Fe-2S]〜(2+)簇之间的相互转化。 FNR。 FNR的[4Fe-4S]〜(2+)簇结合形式的桥联硫化物的选择性〜(34)S标记,有助于识别共振增强的Cys〜(32)S-〜(34)S拉伸模式。 F_2暴露于O_2的[2Fe-2S]〜(2+)簇结合形式的共振拉曼光谱。该结果表明O_2以[2Fe-2S]〜(2+)簇结合的半胱氨酸过硫化物的形式诱导了桥接硫化物的氧化和保留。 MS还证明了[4Fe-4S]〜(2 +)-FNR的O_2暴露形成了多个半胱氨酸过氧化物。通过与DTT和Fe〜(2+)离子厌氧孵育,FNR中的[4Fe-4S]〜(2+)簇也可以从半胱氨酸过饱和配位的[2Fe-2S]〜(2+)簇中再生。在没有外源硫化物的情况下。共振拉曼数据表明,这种涉及硫化物氧化的簇转化不是FNR独有的,因为它也以自由基S-腺苷甲硫氨酸酶中O_2敏感[4Fe-4S]簇的O_2暴露形式发生。这些结果为FNR和铁硫簇转化反应对O_2传感的分子机理提供了新的见识,并为组装或修复生物[4Fe-4S]簇提供了独特的机理。

著录项

  • 来源
  • 作者单位

    Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602;

    Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom;

    Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602;

    Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom;

    Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom;

    Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom;

    Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号