...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >A model of cytoplasmically driven microtubule-based motion in the single-celled Caenorhabditis elegans embryo
【24h】

A model of cytoplasmically driven microtubule-based motion in the single-celled Caenorhabditis elegans embryo

机译:单细胞秀丽隐杆线虫胚胎中基于细胞质驱动的微管运动的模型。

获取原文
获取原文并翻译 | 示例
           

摘要

We present a model of cytoplasmically driven microtubule-based pronuclear motion in the single-celled Caenorhabditis elegans embryo. In this model, a centrosome pair at the male pronucleus initiates stochastic microtubule (MT) growth. These MTs encounter motor proteins, distributed throughout the cytoplasm, that attach and exert a pulling force. The consequent MT-length-dependent pulling forces drag the pronucleus through the cytoplasm. On physical grounds, we assume that the motor proteins also exert equal and opposite forces on the surrounding viscous cytoplasm, here modeled as an incompressible Newtonian fluid constrained within an ellipsoidal eggshell. This naturally leads to streaming flows along the MTs. Our computational method is based on an immersed boundary formulation that allows for the simultaneous treatment of fluid flow and the dynamics of structures immersed within. Our simulations demonstrate that the balance of MT pulling forces and viscous nuclear drag is sufficient to move the pronucleus, while simultaneously generating minus-end directed flows along MTs that are similar to the observed movement of yolk granules toward the center of asters. Our simulations show pronuclear migration, and moreover, a robust pronuclear centration and rotation very similar to that observed in vivo. We find also that the confinement provided by the eggshell significantly affects the internal dynamics of the cytoplasm, increasing by an order of magnitude the forces necessary to translocate and center the pronucleus.
机译:我们目前在单细胞秀丽隐杆线虫胚胎中的细胞质驱动的基于微管的核运动的模型。在此模型中,雄性前核上的一对中心体启动随机微管(MT)的生长。这些MT遇到运动蛋白,分布在整个细胞质中,它们附着并施加拉力。随之而来的依赖于MT长度的拉力将原核拖过细胞质。从物理的角度来看,我们假设运动蛋白也对周围的粘性细胞质施加相同和相反的力,此处建模为约束在椭圆形蛋壳内的不可压缩的牛顿流体。这自然会导致沿着MT的流式传输。我们的计算方法基于浸入式边界公式,该公式允许同时处理流体流动和浸入其中的结构的动力学。我们的模拟表明,MT拉力和粘性核阻力之间的平衡足以移动原核,同时沿着MT产生负端定向流动,这类似于观察到的卵黄颗粒向紫s中心的运动。我们的模拟显示了原核迁移,此外,其鲁棒的原核对中和旋转非常类似于体内观察到的。我们还发现,由蛋壳提供的限制极大地影响了细胞质的内部动力学,使转运和使原核居中所需的力增加了一个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号