...
【24h】

Protein self-diffusion in crowded solutions

机译:蛋白质在拥挤溶液中的自扩散

获取原文
获取原文并翻译 | 示例
           

摘要

Macromolecular crowding in biological media is an essential factor for cellular function. The interplay of intermodular interactions at multiple time and length scales governs a fine-tuned system of reaction and transport processes, including particularly protein diffusion as a limiting or driving factor. Using quasielastic neutron backscattering, we probe the protein self-diffusion in crowded aqueous solutions of bovine serum albumin on nanosecond time and nanometer length scales employing the same protein as crowding agent. The measured diffusion coefficient D(φ) strongly decreases with increasing protein volume fraction φ explored within 7%≤φ≤30%. With an ellipsoidal protein model and an analytical framework involving colloid diffusion theory, we separate the rotational D_r(φ) and translational D_t(φ) contributions to D(φ). The resulting D_t(φ) is described by short-time self-diffusion of effective spheres. Protein self-diffusion at biological volume fractions is found to be slowed down to 20% of the dilute limit solely due to hydrodynamic interactions.
机译:生物介质中的大分子拥挤是细胞功能的重要因素。多种时间和长度尺度上的模块间相互作用的相互作用决定了反应和运输过程的微调系统,特别是蛋白质扩散作为限制或驱动因素。使用准弹性中子反向散射,我们在纳秒时间和纳米长度尺度上使用相同的蛋白质作为拥挤剂,在拥挤的牛血清白蛋白水溶液中探测蛋白质的自扩散。所测得的扩散系数D(φ)在7%≤φ≤30%范围内随蛋白质体积分数φ的增加而大大降低。利用椭球蛋白模型和涉及胶体扩散理论的分析框架,我们分离了旋转D_r(φ)和平移D_t(φ)对D(φ)的贡献。通过有效球体的短时自扩散来描述所得的D_t(φ)。发现仅由于流体动力学相互作用,在生物体积分数下的蛋白质自扩散被减慢至稀释极限的20%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号