...
【24h】

Electron tunneling in respiratory complex I

机译:呼吸复合体I中的电子隧穿

获取原文
获取原文并翻译 | 示例
           

摘要

NADH:ubiquinone oxidoreductase (complex I) plays a central role in the respiratory electron transport chain by coupling the transfer of electrons from NADH to ubiquinone to the creation of the proton gradient across the membrane necessary for ATP synthesis. Here the atomistic details of electronic wiring of all Fe/S clusters in complex I are revealed by using the tunneling current theory and computer simulations; both density functional theory and semi-empirical electronic structure methods were used to examine anti-ferromagnetically coupled spin states and corresponding tunneling wave functions. Distinct electron tunneling pathways between neighboring Fe/S clusters are identified; the pathways primarily consist of two cysteine ligands and one additional key residue. Internal water between protein subunits is identified as an essential mediator enhancing the overall electron transfer rate by almost three orders of magnitude to achieve a physiologically significant value. The identified key residues are further characterized by sensitivity of electron transfer rates to their mutations, examined in simulations, and their conservation among complex I homologues. The unusual electronic structure properties of Fe_4S_4 clusters in complex I explain their remarkable efficiency of electron transfer.
机译:NADH:泛醌氧化还原酶(复合体I)通过将电子从NADH转移到泛醌与跨膜的质子梯度的产生(在ATP合成中)耦合,在呼吸电子传输链中发挥重要作用。在这里,利用隧道电流理论和计算机模拟揭示了复合物I中所有Fe / S团簇的电子布线的原子细节。密度泛函理论和半经验电子结构方法都用于检查反铁磁耦合的自旋态和相应的隧穿波函数。确定了相邻Fe / S团簇之间不同的电子隧穿路径;这些途径主要由两个半胱氨酸配体和一个额外的关键残基组成。蛋白质亚基之间的内部水被认为是将总电子转移速率提高近三个数量级以达到生理学上重要价值的重要介质。鉴定出的关键残基的特征还在于,电子转移速率对其突变的敏感性(在模拟中进行了检查)以及它们在复杂的I同源物中的保守性。 Fe_4S_4团簇在复合物中的异常电子结构性质解释了它们卓越的电子转移效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号