...
首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media
【24h】

RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media

机译:通过适应性进化重编程大肠杆菌发现的RNA聚合酶突变体可在最少培养基中实现最佳生长

获取原文
获取原文并翻译 | 示例
           

摘要

Specific small deletions within the rpoC gene encoding the β'-subunit of RNA polymerase (RNAP) are found repeatedly after adaptation of Escherichia coli K-12 MG1655 to growth in minimal media. Here we present a multiscale analysis of these mutations. At the physiological level, the mutants grow 60% faster than the parent strain and convert the carbon source 15-35% more efficiently to biomass, but grow about 30% slower than the parent strain in rich medium. At the molecular level, the kinetic parameters of the mutated RNAP were found to be altered, resulting in a 4- to 30-fold decrease in open complex longevity at an rRNA promoter and a ~10-fold decrease in transcriptional pausing, with consequent increase in transcript elongation rate. At a genome-scale, systems biology level, gene expression changes between the parent strain and adapted RNAP mutants reveal large-scale systematic transcriptional changes that influence specific cellular processes, including strong down-regulation of motility, acid resistance, fimbria, and curlin genes. RNAP genome-binding maps reveal redistribution of RNAP that may facilitate relief of a metabolic bottleneck to growth. These findings suggest that reprogramming the kinetic parameters of RNAP through specific mutations allows regulatory adaptation for optimal growth in new environments.
机译:大肠杆菌K-12 MG1655在基本培养基中生长适应后,反复发现编码RNA聚合酶(RNAP)β'-亚基的rpoC基因内的特定小缺失。在这里,我们提出了这些突变的多尺度分析。在生理水平上,突变体比亲本菌株生长快60%,并将碳源更有效地转化成生物质15-35%,但比在丰富培养基中的亲本菌株生长慢约30%。在分子水平上,发现突变的RNAP的动力学参数发生了变化,导致rRNA启动子的开放复合物寿命降低了4到30倍,转录暂停降低了约10倍,从而增加了转录本延伸率。在基因组规模的系统生物学水平上,亲本菌株与适应的RNAP突变体之间的基因表达变化揭示了影响特定细胞过程的大规模系统转录变化,包括运动性,耐酸性,菌毛和curlin基因的强烈下调。 RNAP基因组结合图揭示了RNAP的重新分布,这可能有助于缓解新陈代谢瓶颈的增长。这些发现表明,通过特定突变对RNAP的动力学参数进行重新编程可以使调节适应性,从而在新环境中实现最佳生长。

著录项

  • 来源
  • 作者单位

    Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla,CA 92093-0412;

    Departments of Biochemistry and Bacteriology, University of Wisconsin, Madison, WI 53706-1567;

    Bioinformatics Program, University of California at San Diego, La Jolla,CA 92093-0412;

    Department of Bioengineering, University of California at San Diego, La Jolla,CA 92093-0412;

    Department of Bioengineering, University of California at San Diego, La Jolla,CA 92093-0412;

    Department of Bioengineering, University of California at San Diego, La Jolla,CA 92093-0412;

    Departments of Biochemistry and Bacteriology, University of Wisconsin, Madison, WI 53706-1567;

    Department of Bioengineering, University of California at San Diego, La Jolla,CA 92093-0412;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    kinetics; stringent response; transcription;

    机译:动力学;严格的回应;抄写;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号