【24h】

A unified model of protein dynamics

机译:蛋白质动力学的统一模型

获取原文
获取原文并翻译 | 示例
           

摘要

Protein functions require conformational motions. We show here that the dominant conformational motions are slaved by the hydration shell and the bulk solvent. The protein contributes the structure necessary for function. We formulate a model that is based on experiments, insights from the physics of glass-forming liquids, and the concepts of a hierarchically organized energy landscape. To explore the effect of external fluctuations on protein dynamics, we measure the fluctuations in the bulk solvent and the hydration shell with broadband dielectric spectroscopy and compare them with internal fluctuations measured with the Moessbauer effect and neutron scattering. The result is clear. Large-scale protein motions are slaved to the fluctuations in the bulk solvent. They are controlled by the solvent viscosity, and are absent in a solid environment. Internal protein motions are slaved to the beta fluctuations of the hydration shell, are controlled by hydration, and are absent in a dehydrated protein. The model quantitatively predicts the rapid increase of the mean-square displacement above ≈200 K, shows that the external beta fluctuations determine the temperature- and time-dependence of the passage of carbon monoxide through myoglobin, and explains the nonexponential time dependence of the protein relaxation after photodissociation.
机译:蛋白质功能需要构象运动。我们在这里表明,主要的构象运动受水合壳和本体溶剂的影响。蛋白质贡献了功能所必需的结构。我们根据实验,从形成玻璃的液体的物理学中获得的见识以及分层组织的能源格局的概念,制定了一个模型。为了探索外部波动对蛋白质动力学的影响,我们使用宽带介电谱测量了本体溶剂和水合壳中的波动,并将它们与利用Moessbauer效应和中子散射测量的内部波动进行了比较。结果很明显。大规模的蛋白质运动是由于大量溶剂的波动所致。它们受溶剂粘度控制,在固体环境中不存在。内部蛋白质运动是由于水合壳的β波动引起的,受水合作用控制,而在脱水蛋白质中则不存在。该模型定量预测≈200K以上均方位移的快速增加,表明外部β波动决定了一氧化碳通过肌红蛋白的温度和时间依赖性,并解释了蛋白质的非指数时间依赖性光解离后放松。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号