...
首页> 外文期刊>Progress in Nuclear Energy >Neutronic evaluation of coating and cladding materials for accident tolerant fuels
【24h】

Neutronic evaluation of coating and cladding materials for accident tolerant fuels

机译:耐事故燃料的涂层和覆层材料的中子学评估

获取原文
获取原文并翻译 | 示例
           

摘要

In severe accident conditions with loss of active cooling in the core, zirconium alloys, used as fuel cladding materials for current light water reactors (LWR), undergo a rapid oxidation by high temperature steam with consequent hydrogen generation. Novel fuel technologies, named accident tolerant fuels (ATF), seek to improve the endurance of severe accident conditions in LWRs by eliminating or at least mitigating such detrimental steam-cladding interaction. Most ATF concepts are expected to work within the design framework of current and future light water reactors, and for that reason they must match or exceed the performance of conventional fuel in normal conditions. This study analyzed the neutronic performance of ATF when employed in both pressurized and boiling water reactors. Two concepts were evaluated: (1) coating the exterior of zirconium-alloy cladding with thin ceramics to limit the zirconium available for reaction with high-temperature steam; (2) replacing zirconium alloys with alternative materials possessing slower oxidation kinetics and reduced hydrogen production. Findings show that ceramic coatings should remain 10-30 mu m thick to limit the neutronic penalty. Alternative cladding materials, with the exception of SiC, enhance neutron loss compared to zirconium-alloys. An extensive parametric analysis concluded that reference performance metrics can be met by employing 300-mu m or less thick cladding or increasing fuel enrichment by up to 1.74% depending on material and geometry. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在严重事故条件下,由于堆芯失去主动冷却,用作当前轻水反应堆(LWR)燃料包壳材料的锆合金会受到高温蒸汽的快速氧化,从而产生氢。被称为事故容忍燃料(ATF)的新型燃料技术试图通过消除或至少减轻这种有害的蒸汽包壳相互作用来提高轻水堆严重事故条件的承受力。预计大多数ATF概念将在当前和未来的轻水反应堆的设计框架内运行,因此,它们必须在正常条件下与常规燃料的性能相匹配或超过常规燃料的性能。这项研究分析了ATF在加压和沸水反应堆中的中子性能。对两个概念进行了评估:(1)用薄陶瓷覆盖锆合金熔覆层的外部,以限制可与高温蒸汽反应的锆。 (2)用替代材料替代锆合金,这些替代材料具有较慢的氧化动力学并减少了氢气的产生。研究结果表明,陶瓷涂层应保持10-30微米的厚度,以限制中子学损失。与SiC合金相比,除SiC之外的其他包层材料都会增加中子损失。广泛的参数分析得出结论,通过使用300微米或更小的厚度的包层或根据材料和几何形状将燃料浓缩度提高多达1.74%,可以满足参考性能指标。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号