首页> 外文期刊>Renewable energy >Use of encapsulated zinc particles in a eutectic chloride salt to enhance thermal energy storage capacity for concentrated solar power
【24h】

Use of encapsulated zinc particles in a eutectic chloride salt to enhance thermal energy storage capacity for concentrated solar power

机译:在共晶氯化物盐中使用封装的锌颗粒来增强集中太阳能发电的热能存储能力

获取原文
获取原文并翻译 | 示例
           

摘要

Concentrated Solar Power (CSP) is considered as a viable large-scale renewable energy source to produce electricity. However, current costs to produce electricity from CSP are not cost competitive as compared to the traditional energy generation technologies based on fossil fuels and nuclear. It is envisioned that development of high efficiency and high heat capacity thermal storage fluids will increase system efficiency, reduce structural storage volume, and hence, contribute to reducing costs. Particularly, with respect to CSP, current high temperature energy storage fluids, such as molten salts, are relatively limited in terms of their thermal energy storage capacity and thermal conductivity. The current work explores possibility of boosting the thermal storage capacity of molten salts through latent heat of added phase change materials. We studied the advantage Of adding coated Zn micron-sized particles to alkali chloride salt eutectic for enhanced thermal energy storage. Zinc particles (0.6 mu m and 5 mu m) obtained from commercial source were coated with an organo-phosphorus shell to improve chemical stability and to prevent individual particles from coalescing with one another during melt/freeze cycles. Thermal cycling tests (200 melt/freeze cycles) showed that coated Zn particles have good thermal stability and are chemically inert to alkali chloride salt eutectic in both N-2 and in air atmospheres. Elemental mapping of the cross-sectional view of coated Zn particles from the composite after thermal cycles showed no signs of oxidation, agglomeration or other type of particle degradation. The measured enhancement in volumetric thermal storage capacity of the composite with just similar to 10 vol% of coated Zn particles over the base chloride salt eutectic varies from 15% to 34% depending on cycling temperature range (Delta T = 50 degrees C -100 degrees C. (C) 2015 Elsevier Ltd. All rights reserved.
机译:集中式太阳能(CSP)被认为是可行的大规模可再生能源来发电。但是,与基于化石燃料和核能的传统能源发电技术相比,当前使用CSP发电的成本在成本上没有竞争力。可以预见的是,开发高效率和高热容量的储热流体将提高系统效率,减少结构存储体积,并因此有助于降低成本。特别地,对于CSP,当前的高温能量存储流体,例如熔融盐,在其热能存储能力和热导率方面受到相对限制。当前的工作探索了通过添加相变材料的潜热来提高熔融盐的储热能力的可能性。我们研究了将涂层的Zn微米大小的颗粒添加到碱金属氯化物盐共晶中以增强热能存储的优势。从商业来源获得的锌颗粒(0.6μm和5μm)涂有有机磷壳,以提高化学稳定性并防止单个颗粒在熔融/冻结循环中彼此聚结。热循环测试(200次熔融/冻结循环)表明,包覆的Zn颗粒具有良好的热稳定性,并且在N-2和空气中均对碱金属氯化物共晶呈化学惰性。热循环后来自复合材料的涂覆的锌颗粒的横截面图的元素图显示没有氧化,团聚或其他类型的颗粒降解的迹象。与基础氯化物盐共晶相比,与涂覆的Zn颗粒的体积百分比刚好接近10体积%的复合材料,其体积蓄热能力的提高幅度在15%到34%之间变化,具体取决于循环温度范围(Delta T = 50摄氏度-100摄氏度) C.(C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号