首页> 外文期刊>Science of advanced materials >Effect of Cooling Mode on the Microstructure and Toughness of Heavy Gauge Pipeline Steel
【24h】

Effect of Cooling Mode on the Microstructure and Toughness of Heavy Gauge Pipeline Steel

机译:冷却方式对厚规格管线钢的组织和韧性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Pipeline steel, as the most typical low carbon micro-alloyed steel, is very harsh to toughness and strength. The main difficulties in the production of the heavy gauge pipeline steel are not only to meet the high strength, but also to ensure good toughness, especially the performance of Drop-Weight Tear Test (DWTT). The previous research results show that the performance of DWTT of pipeline steel with thick specification is difficult to control, due to the increase of the surface and center temperature gradient with the increase of the thickness, which resulting in stress gradient existing in the microstructure. With the effect of the impact, the inconsistent microstructure deformation can cause the low performance of DWTT. Therefore, the most critical technology is to control the surface and heart microstructure uniformity. In this study, the methods of theoretical calculation and simulation were used for analysis. The temperature difference between the surface and the inner core by the traditional cooling method was up to 367 degrees C. And finally the inner core and the surface was changed into the different microstructure, which was consistent with the actual field test results. Then by using the method of combination of the theoretical calculation and field debugging, the intermittent cooling technology was put forward. Through changing the cooling mode to narrow the temperature gradient between the surface and the inner core, thereby the section structure differences were improved, finally the surface and inner core temperature difference was reduced to 219 degrees C and the change of the surface and heart microstructure tended to keep consistent. The results show that the toughness of heavy gauge pipeline steel has been improved significantly after the field batch tests, and finally the purpose of DWTT stability control of heavy gauge pipeline steel has been achieved.
机译:管线钢作为最典型的低碳微合金钢,其韧性和强度非常苛刻。生产大规格管线钢的主要困难不仅在于满足高强度,而且要确保良好的韧性,尤其是落锤撕裂试验(DWTT)的性能。以往的研究结果表明,厚壁管线钢的DWTT性能难以控制,这是由于随着厚度的增加表面温度和中心温度梯度的增加,导致组织中存在应力梯度。在冲击的影响下,不一致的组织变形会导致DWTT的性能低下。因此,最关键的技术是控制表面和心脏微结构的均匀性。在这项研究中,使用理论计算和模拟方法进行分析。采用传统的冷却方法,表面和内芯之间的温差高达367摄氏度。最后,内芯和表面变成不同的微观结构,这与现场测试的结果相吻合。然后采用理论计算与现场调试相结合的方法,提出了间歇冷却技术。通过改变冷却方式以缩小表面与内芯之间的温度梯度,从而改善了截面结构的差异,最终将表面与内芯的温度差减小至219℃,并趋向于表面和心脏微结构的变化。保持一致。结果表明,经过现场批量试验,大规格管线钢的韧性得到了显着提高,最终达到了大规格管线钢DWTT稳定性控制的目的。

著录项

  • 来源
    《Science of advanced materials》 |2017年第7期|1258-1265|共8页
  • 作者单位

    Northeastern Univ, Sch Met, Shenyang 110819, Peoples R China|Liaoning Inst Sci & Technol, Sch Met Engn, Benxi 117004, Peoples R China;

    Liaoning Inst Sci & Technol, Sch Met Engn, Benxi 117004, Peoples R China;

    Benxi Steel Plates Co LTD, Res Inst Prod, Benxi 117000, Peoples R China;

    Liaoning Inst Sci & Technol, Sch Met Engn, Benxi 117004, Peoples R China;

    Liaoning Inst Sci & Technol, Sch Met Engn, Benxi 117004, Peoples R China;

    Northeastern Univ, Sch Met, Shenyang 110819, Peoples R China;

    Northeastern Univ, Sch Met, Shenyang 110819, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pipeline Steel; Cooling Mode; Microstructure; Toughness; DWTT;

    机译:管线钢冷却方式显微组织韧性DWTT;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号