...
首页> 外文期刊>IEEE Journal of Solid-State Circuits >An Accurate, Continuous, and Lossless Self-Learning CMOS Current-Sensing Scheme for Inductor-Based DC-DC Converters
【24h】

An Accurate, Continuous, and Lossless Self-Learning CMOS Current-Sensing Scheme for Inductor-Based DC-DC Converters

机译:用于基于电感器的DC-DC转换器的准确,连续且无损的自学习CMOS电流检测方案

获取原文
获取原文并翻译 | 示例
           

摘要

Sensing current is a fundamental function in power supply circuits, especially as it generally applies to protection and feedback control. Emerging state-of-the-art switching supplies, in fact, are now exploring ways to use this sensed-current information to improve transient response, power efficiency, and compensation performance by appropriately self-adjusting, on the fly, frequency, inductor ripple current, switching configuration (e.g., synchronous to/from asynchronous), and other operating parameters. The discontinuous, non-integrated, and inaccurate nature of existing lossless current-sensing schemes, however, impedes their widespread adoption, and lossy solutions are not acceptable. Lossless, filter-based techniques are continuous, but inaccurate when integrated on-chip because of the inherent mismatches between the filter and the power inductor. The proposed GM-C filter-based, fully integrated current-sensing CMOS scheme circumvents this accuracy limitation by introducing a self-learning sequence to start-up and power-on-reset. During these seldom-occurring events, the gain and bandwidth of the internal filter are matched to the response of the power inductor and its equivalent series resistance (ESR), effectively measuring their values. A 0.5 mum CMOS realization of the proposed scheme was fabricated and applied to a current-mode buck switching supply, achieving overall DC and AC current-gain errors of 8% and 9%, respectively, at 0.8 A DC load and 0.2 A ripple currents for 3.5 muH-14 muH inductors with ESRs ranging from 48 mOmega to 384 mOmega (other lossless, state-of-the-art solutions achieve 20%-40% error, and only when the nominal specifications of the power MOSFET and/or inductor are known). Since the self-learning sequence is non-recurring, the power losses associated with the foregoing solution are minimal, translating to a 2.6% power efficiency savings when compared to the more traditional but accurate series-sense resistor (e.g., 50 mOm-nega) technique
机译:感应电流是电源电路的基本功能,尤其是它通常应用于保护和反馈控制时。实际上,新兴的开关电源现在正在探索使用这种感测到的电流信息的方法,以通过在运行中适当地自我调整频率,电感和纹波来改善瞬态响应,功率效率和补偿性能。当前,切换配置(例如,同步到异步或从异步同步)以及其他操作参数。现有无损电流检测方案的不连续,非集成和不准确的性质阻碍了它们的广泛采用,并且有损解决方案是不可接受的。基于滤波器的无损技术是连续的,但由于滤波器与功率电感器之间固有的不匹配,因此在片上集成时不准确。所提出的基于GM-C滤波器的全集成电流感测CMOS方案通过在启动和上电复位中引入了自学习序列,从而克服了这种精度限制。在这些很少发生的事件中,内部滤波器的增益和带宽会与功率电感器及其等效串联电阻(ESR)的响应相匹配,从而有效地测量其值。制造了该方案的0.5 mm CMOS实现,并将其应用于电流模式降压开关电源,在0.8 A直流负载和0.2 A纹波电流下,总的DC和AC电流增益误差分别为8%和9%。适用于ESR为48 mOmega至384 mOmega的3.5μH-14μH电感器(其他无损,最新解决方案仅在功率MOSFET和/或电感器的标称规格满足20%-40%的误差是已知的)。由于自学习序列是非重复性的,因此与上述解决方案相关的功率损耗极小,与更传统但精确的串联感应电阻(例如50 mOm-nega)相比,可节省2.6%的功率效率技术

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号