首页> 外文期刊>Water resources research >Saline pulse test monitoring with the self-potential method to nonintrusively determine the velocity of the pore water in leaking areas of earth dams and embankments
【24h】

Saline pulse test monitoring with the self-potential method to nonintrusively determine the velocity of the pore water in leaking areas of earth dams and embankments

机译:用自电位法进行盐水脉冲试验监测,以非侵入方式确定土坝和路堤泄漏区域的孔隙水速度

获取原文
获取原文并翻译 | 示例
           

摘要

A method is proposed to localize preferential fluid flow pathways in porous media on the basis of time-lapse self-potential measurements associated with salt tracer injection upstream. This method is first tested using laboratory data. A network of nonpolarizing electrodes located is connected to a highly sensitive voltmeter used to record the resulting electrical field fluctuations occurring over time at the surface of the tank. The transport of the conductive salt plume through the permeable porous materials changes the localized streaming potential coupling coefficient associated with the advective drag of the excess charge of the pore water and is also responsible for a diffusion current associated with the salinity gradient. Monitoring of the electrical potential distribution at the ground surface can be used to localize the pulse of saline water over time and to determine its velocity. This method applies in real time and can be used to track highly localized flow pathways characterized by high permeability. Our sandbox experiment demonstrates the applicability of this new method under well-controlled conditions with a coarse-sand channel embedded between fine-sand banks. A finite element model allows us to reproduce the time-lapse electrical potential distribution over the channel, but some discrepancies were observed on the banks. Finally, we performed a numerical simulation for a synthetic case study inspired by a recently published field case study. A Markov chain Monte Carlo sampler is used to determine the permeability and the porosity of the preferential fluid flow pathway of this synthetic case study.
机译:提出了一种方法,该方法基于与上游盐示踪剂注入相关的时空自电位测量,在多孔介质中定位优先流体流动路径。首先使用实验室数据测试此方法。设置的非极化电极网络连接到高灵敏度电压表,该电压表用于记录在储罐表面随时间推移发生的最终电场波动。导电盐羽流过可渗透多孔材料的传输改变了与孔隙水过量电荷的平流阻力相关的局部流势耦合系数,并且还导致了与盐度梯度相关的扩散电流。监测地表电位分布可用于确定盐水随时间变化的脉冲并确定其速度。该方法实时应用,可用于跟踪以高渗透率为特征的高度局部化的流动路径。我们的沙盒实验证明了该新方法在良好控制的条件下的适用性,并且在细砂堤之间嵌入了粗砂通道。有限元模型允许我们重现通道上时移的电位分布,但是在堤岸上观察到一些差异。最后,我们根据最近发布的现场案例研究对合成案例研究进行了数值模拟。马尔可夫链蒙特卡洛采样器用于确定该合成案例研究的优先流体流动路径的渗透率和孔隙率。

著录项

  • 来源
    《Water resources research》 |2012年第4期|p.W04201.1-W04201.17|共17页
  • 作者单位

    Department of Geophysics,Colorado School of Mines, Green Center, 1500 Illinois St., Golden,CO 80401, USA;

    Department of Geophysics,Colorado School of Mines, Green Center, 1500 Illinois St., Golden,CO 80401, USA,ISTerre, UMR CNRS 5275, Universite de Savoie, Le Bourget du Lac,France;

    UMR 6143 CNRS, Universite de Rouen, Bat. IRESE A,F-76821 Mont-Saint-Aignan Cedex, France;

    Department of Geophysics,Colorado School of Mines, Green Center, 1500 Illinois St., Golden,CO 80401, USA;

    Division of Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA;

    Division of Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号