...
首页> 外文期刊>Physics of fluids >Fluid flow induced by periodic temperature oscillation over a flat plate: Comparisons with the classical Stokes problems
【24h】

Fluid flow induced by periodic temperature oscillation over a flat plate: Comparisons with the classical Stokes problems

机译:平板上周期性温度振荡引起的流体流动:与经典斯托克斯问题的比较

获取原文
获取原文并翻译 | 示例
           

摘要

We delineate the dynamics of temporally and spatially periodic flow over a flat plate originating out of periodic thermoviscous expansion of the fluid, as a consequence of a thermal wave applied on the plate wall. We identify two appropriate length scales, namely, the wavelength of the temperature wave and the thermal penetration depth, so as to bring out the complex thermo-physical interaction between the fluid and the solid boundaries. Our results reveal that the entire thermal fluctuation and the subsequent thermoviscous actuation remain confined within a "thermo-viscous boundary layer." Based on the length scales and the analytical solution for the temperature field, we demarcate three different layers, namely, the wall layer (which is further sub-divided into various sub-layers, based on the temperature field), the intermediate layer, and the outer layer. We show that the interactions between the pressure oscillation and temperature-dependent viscosity yield a unidirectional time-averaged (mean) flow within the wall layer opposite to the direction of motion of the thermal wave. We also obtain appropriate scalings for the time-averaged velocity, which we further substantiate by full scale numerical simulations. Our analysis may constitute a new design basis for simultaneous control of the net throughput and mixing over a solid boundary, by the judicious employment of a traveling temperature wave. (C) 2015 AIP Publishing LLC.
机译:我们描述了平板上的时间和空间周期性流动的动力学,该动力学是由于施加在板壁上的热波导致的流体的周期性热粘性膨胀而引起的。我们确定了两个合适的长度尺度,即温度波的波长和热渗透深度,以揭示流体与固体边界之间复杂的热物理相互作用。我们的结果表明,整个热波动和随后的热粘性致动仍被限制在“热粘性边界层”内。根据长度标尺和温度场的解析解,我们划分出三个不同的层,即,壁层(根据温度场进一步细分为不同的子层),中间层和外层。我们表明,压力振荡和随温度变化的粘度之间的相互作用在壁层内产生了与热波运动方向相反的单向时间平均(平均)流量。我们还获得了时间平均速度的适当标度,我们将通过全尺寸数值模拟进一步证实这一点。我们的分析可能通过明智地利用行进温度波来同时控制净产量和在固体边界上混合,从而构成了新的设计基础。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号