...
首页> 外文期刊>Physics - Uspekhi >High-energy solar flare processes and their investigation onboard Russian satellite missions CORONAS
【24h】

High-energy solar flare processes and their investigation onboard Russian satellite missions CORONAS

机译:俄罗斯卫星CORONAS上的高能太阳耀斑过程及其调查

获取原文
获取原文并翻译 | 示例
           

摘要

The Skylab (1973), SMM (Solar Maximum Mission) (1980),Yohkoh (1991), and SOHO (SOlar Heliospheric Observa-tory) (1995) solar missions created an instrumental revolution in solar studies and opened up the era of solar observations in theUV and X-ray bands with an angular resolution of several arcseconds. Observations from these satellites and from the subsequent TRACE (Transition Region and Coronal Explorer) (1998), CORONAS-F (2001), and RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager)(2002) missions have resulted in a new level of understanding of plasma processes in the solar corona [1], thermal and non-thermal processes accompanying the appearance and devel-opment of flare structures [2, 3], the dynamics of three-dimensional heliospheric processes, and so on [4]. The impressive progress in digital X-ray optics and spectro-metry, which provide huge observational data that give not only rich observational material for professional researchers but also new impressions for the general community, as well as new possibilities to observe the early stages of solar coronal plasma ejections into the interplanetary space, shifted the focus of solar space studies toward precise optical, UV, and X-ray imaging. Such imaging has been performed by the recently launched missions Hinode, (Japan), STEREO (Solar TErrestrial RElations Observatory (NASA), and SDO (Solar Dynamic Observatory (NASA); it is planned to carry out imaging by approved missions Picard (ESA) and Aditay-I (India), and is being discussed as a task for future missions like Solar-C (Japan), Solar Probe (NASA), Solar Orbiter (ESA), and Interhelozond (Russia).
机译:Skylab(1973年),SMM(最大太阳任务)(1980年),Yohkoh(1991年)和SOHO(太阳日球观测)(1995年)太阳任务在太阳研究中掀起了一场仪器革命,开辟了太阳观测时代。在紫外线和X射线波段中的角度分辨率为几弧秒。从这些卫星以及随后的TRACE(过渡区和日冕探测器)(1998年),CORONAS-F(2001年)和RHESSI(鲁汶拉马提高能太阳光谱成像仪)(2002年)任务中进行的观测,使理解水平有了新的提高。太阳电晕的等离子体过程[1],伴随着火炬结构的出现和发展的热过程和非热过程[2、3],三维日球过程的动力学等等[4]。数字X射线光学和光谱测量技术取得了令人瞩目的进步,它提供了巨大的观测数据,这些数据不仅为专业研究人员提供了丰富的观测资料,还为广大公众带来了新的印象,并为观察太阳能的早期阶段提供了新的可能性日冕等离子射入行星际空间,将太阳空间研究的重点转向了精确的光学,紫外线和X射线成像。这种成像是由最近发射的日本Hinode任务,STEREO(太阳地面关系天文台(NASA)和SDO(太阳动态天文台(NASA))执行的;计划由获批准的Picard任务(ESA)进行成像。和Aditay-I(印度),并且正在讨论作为Solar-C(日本),Solar Probe(NASA),Solar Orbiter(ESA)和Interhelozond(俄罗斯)等未来任务的任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号