...
首页> 外文期刊>Plant Physiology and Biochemistry >Ginkgolide and bilobalide biosynthesis in Ginkgo biloba. I: Sites of synthesis, translocation and accumulation of ginkgolides and bilobalide.
【24h】

Ginkgolide and bilobalide biosynthesis in Ginkgo biloba. I: Sites of synthesis, translocation and accumulation of ginkgolides and bilobalide.

机译:银杏内酯和银杏内酯的生物合成。 I:银杏内酯和银杏内酯的合成,易位和积累位点。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In vitro experiments with G. biloba leaf segments showed a correlation between accumulation of ginkgolides and bilobalide and rhizogenesis. Experiments with seedlings showed that ginkgolides and bilobalide were synthesized from 14CO2 when the photosynthesis conditions were optimized. Ginkgolide A was first labelled as early as 8 h after application of 14CO2. The ginkgolide labelling reached a peak at day 3, then decreased, reaching a steady state around day 10. Bilobalide labelling occurred later,reaching a peak at day 6. The time course of ginkgolide labelling indicated a possible in situ bioconversion of ginkgolide A to ginkgolide C, by successive additions of hydroxyl groups. With both 14CO2 and (U-14C) glucose, the labelled terpenes were first detected in roots, and subsequently in stems and leaves. These results indicate that all the enzymic steps leading to the G. biloba diterpene end products take place in the roots but not in the leaves. Roots are, at the same time, a site of biosynthesis and accumulation of ginkgolides and bilobalide, whereas leaves seem to act only as a sink. The balance of 14C-labelled terpenes in the whole plant during the chase period (27 days) indicates that terpenes are translocated from the roots to the leaves in a source-sink manner. However, the possible involvement of modified terpene molecules in the transport process and the localization of the translocation pathway are not known.
机译:银杏叶片段的体外实验显示银杏内酯和银杏内酯的积累与发根之间的相关性。幼苗实验表明,当优化光合作用条件时,由14CO2合成了银杏内酯和银杏内酯。首先在施用14CO2后8小时对银杏内酯A进行标记。银杏内酯标记在第3天达到峰值,然后下降,在第10天左右达到稳定状态。后来出现双叶利德标记,在第6天达到峰值。银杏内酯标记的时间过程表明,银杏内酯A可能就地生物转化为银杏内酯。 C,通过连续添加羟基。使用14CO2和(U-14C)葡萄糖时,首先在根中检出标记的萜烯,然后在茎和叶中检出。这些结果表明导致银杏双萜终产物的所有酶促步骤均发生在根部而不是叶片中。根同时是银杏内酯和银杏内酯的生物合成和积累的场所,而叶子似乎仅起着汇的作用。在追赶期(27天)中,整个植物中14 C标记的萜烯的平衡表明,萜烯以源-库方式从根部转移到叶片。但是,尚不清楚修饰的萜烯分子可能参与转运过程和转运途径的定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号