...
首页> 外文期刊>Plasma physics and controlled fusion >MAST and the impact of low aspect ratio on tokamak physics
【24h】

MAST and the impact of low aspect ratio on tokamak physics

机译:MAST和低长宽比对托卡马克物理的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Low aspect ratio plasmas in devices such as the mega ampere spherical tokamak (MAST) are characterized by strong toroidicity, strong shaping and self fields, low magnetic field, high beta, large plasma flow and high intrinsic E x B flow shear. These characteristics have important effects on plasma behaviour, provide a stringent test of theories and scaling laws and offer new insight into underlying physical processes, often through the amplification of effects present in conventional tokamaks (e.g. impact of fuelling source and magnetic geometry on H-mode access). The enhancement of neoclassical effects makes MAST ideal for the study of particle pinch processes and neoclassical resistivity corrections, which can be assessed with unique accuracy. MAST data have an important influence on scaling laws for confinement and H-mode threshold power, exerting strong leverage on the form of these scaling laws (e.g. scaling with aspect ratio, beta, magnetic field, etc). The high intrinsic flow shear is conducive to transport barrier formation by turbulence suppression. Internal transport barriers are readily formed in MAST with both co- and counter-NBI, and electron and ion thermal diffusivities have been reduced to the ion neoclassical level. The strong variation in toroidal field (similar tox5 in MAST) between the inboard and outboard plasma edges, provides a useful test of edge models prompting, for example, a comparison of inboard and outboard scrape-off-layer transport to highlight magnetic field effects. Low aspect ratio plasmas are also an ideal testing ground for plasma instabilities, such as neoclassical tearing modes, edge localized modes (ELMs) and Alfven eigenmodes, which are readily generated due to the supra-Alfvenic ion population. Examples of how MAST is providing new insights into such instabilities (e.g. ELM structure) are described.
机译:诸如安培球形托卡马克(MAST)之类的设备中的低长宽比等离子体具有强环形性,强成形性和自电场,低磁场,高贝塔系数,大等离子体流和高固有E x B流切变的特点。这些特征通常会对等离子体性能产生重要影响,对理论和比例定律进行严格测试,并通过放大常规托卡马克中存在的效应(例如,燃料源和磁几何对H模式的影响)提供对潜在物理过程的新见解。访问)。新古典效应的增强使MAST成为研究粒子收缩过程和新古典电阻率校正的理想之选,可以以独特的准确性进行评估。 MAST数据对于限制和H模式阈值功率的缩放定律具有重要影响,对这些缩放定律的形式(例如按纵横比,β,磁场等进行缩放)具有强大的影响力。高的固有流动剪切力有利于通过抑制湍流来形成运输屏障。在MAST中,共NBI和相对NBI都容易形成内部传输壁垒,并且电子和离子的热扩散率已降低到离子新古典水平。内侧和外侧等离子体边缘之间的环形场的强烈变化(类似于MAST中的x5),提供了有用的边缘模型测试,例如,比较了内侧和外侧刮擦层传输以突出磁场效应。低纵横比的等离子体也是等离子体不稳定的理想测试平台,例如新古典撕裂模式,边缘局部模式(ELM)和Alfven本征模式,这些都是由于超Alfvenic离子群而容易产生的。描述了MAST如何为此类不稳定性提供新见解的示例(例如ELM结构)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号