首页> 外文期刊>Plasma physics and controlled fusion >Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak
【24h】

Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak

机译:DIII-D托卡马克中静态H型等离子体的边缘径向电场结构

获取原文
获取原文并翻译 | 示例
           

摘要

H-mode operation is the choice for next step tokamak devices based on either conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect. the beta limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D over the past four years have demonstrated a new operating regime, the quiescent H-mode (QH-mode) regime, that solves these problems. QH-mode plasmas have now been run for over 4 s (>30 energy confinement times). Utilizing the steady-state nature of the QH-mode edge allows us to obtain unprecedented spatial resolution of the edge ion profiles and the edge radial electric field, E-r, by sweeping the edge plasma slowly past the view points of the charge exchange spectroscopy system. We have investigated the effects of direct edge ion orbit loss on the creation and sustainment of the QH-mode. Direct loss of ions injected into the velocity-space loss cone at the plasma edge is not necessary for creation or sustainment of-the QH-mode. The direct ion orbit loss has little effect on the edge E, well. The E, at the bottom of the well in these cases is about - 100 kV m(-1) compared with -20 to -30 kV m(-1) in the standard H-mode. The well is about I cm wide, which is close to the diameter of the deuteron gyro-orbit. We also have investigated the effect of changing edge triangularity by, changing the plasma shape from upwardly biased single null to magnetically balanced double null. We have now achieved the QH-mode in these double-null plasmas. The increased triangularity allows us to increase pedestal density in QH-mode plasmas by a factor of about 2.5 and overall pedestal pressure by a factor of 2. Pedestal beta and nu* values matching the values desired for ITER have been achieved. In these higher density plasmas, the E-r well is significantly shallower and broader.
机译:基于常规或高级托卡马克物理学,H模式操作是下一步托卡马克设备的选择。然而,由于边缘局部模式(ELM)的影响,对于传统和高级托卡马克来说,这种选择都付出了巨大的代价。 ELM会在偏滤器上产生严重的腐蚀,并可能产生影响。 beta限制和高级托卡马克运营所需的减少的核心运输区域。 DIII-D在过去四年中的实验结果证明了一种新的运行方式,即静态H模式(QH模式),可以解决这些问题。 QH模式等离子体现已运行了4秒钟以上(> 30的能量限制时间)。利用QH模式边缘的稳态特性,我们可以通过将边缘等离子体缓慢扫过电荷交换光谱系统的视点,从而获得边缘离子轮廓和边缘径向电场E-r的空前分辨率。我们研究了直接边缘离子轨道损失对QH模式产生和维持的影响。对于创建或维持QH模式,在等离子边缘注入到速度空间损失锥中的离子没有直接损失。直接离子轨道损失对边缘E的影响很小。在这些情况下,井底的E约为-100 kV m(-1),而在标准H模式下,则为-20至-30 kV m(-1)。井宽约1厘米,接近氘核陀螺轨道的直径。我们还研究了通过将等离子体形状从向上偏置的单零点更改为磁平衡的双零点来改变边缘三角形的影响。现在,我们已经在这些双无效等离子体中实现了QH模式。增加的三角形性使我们能够将QH模式等离子体中的基座密度增加约2.5倍,将总基座压力增加2倍。已经实现了与ITER所需值相匹配的基座β和nu *值。在这些更高密度的等离子体中,E-r阱明显更浅更宽。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号