...
首页> 外文期刊>Plasma physics and controlled fusion >Progress on advanced tokamak and steady-state scenario development on DIII-D and NSTX
【24h】

Progress on advanced tokamak and steady-state scenario development on DIII-D and NSTX

机译:DIII-D和NSTX的高级托卡马克和稳态方案开发的进展

获取原文
获取原文并翻译 | 示例
           

摘要

Advanced tokamak (AT) research seeks to develop steady-state operating scenarios for ITER and other future devices from a demonstrated scientific basis. Normalized target parameters for steady-state operation on ITER are 100% non-inductive current operation with a bootstrap current fraction f(BS) >= 60%, q(95) similar to 4-5 and G = beta H-N(scaling)/q(95)(2) >= 0.3. Progress in realizing such plasmas is considered in terms of the development of plasma control capabilities and scientific understanding, leading to improved AT performance. NSTX has demonstrated active resistive wall mode stabilization with low, ITER-relevant, rotation rates below the critical value required for passive stabilization. On DIII-D, experimental observations and GYRO simulations indicate that ion internal transport barrier (ITB) formation at rational-q surfaces is due to equilibrium zonal flows generating high local E x B shear levels. In addition, stability modelling for DIII-D indicates a path to operation at beta N >= 4 with q(min) >= 2, using broad, hollow current profiles to increase the ideal wall stability limit. Both NSTX and DIII-D have optimized plasma performance and expanded AT operational limits. NSTX now has long-pulse, high performance discharges meeting the normalized targets for an spherical torus-based component test facility. DIII-D has developed sustained discharges combining high beta and ITBs, with performance approaching levels required for AT reactor concepts, e. g. beta(N) = 4, H-89 = 2.5, with f(BS) > 60%. Most importantly, DIII-D has developed ITER steady-state demonstration discharges, simultaneously meeting the targets for steady-state Q >= 5 operation on ITER set out above, substantially increasing confidence in ITER meeting its steady-state performance objective.
机译:先进的托卡马克(AT)研究旨在通过证明的科学基础为ITER和其他未来设备开发稳态操作方案。 ITER上稳态工作的归一化目标参数是100%非感应电流工作,自举电流分数f(BS)> = 60%,q(95)类似于4-5,G = beta HN(缩放)/ q(95)(2)> = 0.3。考虑到等离子体控制能力的发展和科学认识,在实现这种等离子体方面取得了进展,从而改善了AT性能。 NSTX展示了主动电阻墙模式稳定,与ITER相关的低旋转速率低于被动稳定所需的临界值。在DIII-D上,实验观察和GYRO模拟表明,有理q表面的离子内部传输势垒(ITB)形成是由于产生高局部E x B剪切水平的平衡区域流所致。此外,DIII-D的稳定性模型表明了在βN> = 4且q(min)> = 2时使用宽空心电流分布来增加理想壁稳定性极限的操作路径。 NSTX和DIII-D都具有优化的等离子体性能和扩展的AT操作限制。现在,NSTX具有长脉冲高性能放电,可以满足基于球形环面部件测试设备的标准化目标。 DIII-D已开发出结合了高β和ITB的持续放电,其性能接近AT反应堆概念要求的水平,例如。 G。 beta(N)= 4,H-89 = 2.5,f(BS)> 60%。最重要的是,DIII-D开发了ITER稳态演示放电装置,同时满足了上述ITER对ITER进行稳态Q> = 5操作的目标,从而大大提高了对ITER达到其稳态性能目标的信心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号