首页> 外文期刊>Plasma physics and controlled fusion >The energy partitioning of non-thermal particles in a plasma: the Coulomb logarithm revisited
【24h】

The energy partitioning of non-thermal particles in a plasma: the Coulomb logarithm revisited

机译:等离子体中非热粒子的能量分配:重新研究库仑对数

获取原文
获取原文并翻译 | 示例
           

摘要

The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated exactly to leading and next-to-leading accuracy in the plasma density by Brown, Preston and Singleton (BPS). Since the calculational techniques of BPS might be unfamiliar to some, and since the same methodology can also be used for other energy transport phenomena, we will review the main ideas behind the calculation. BPS used their stopping power calculation to derive a Fokker-Planck equation, also accurate to leading and next-to-leading orders, and we will also review this. We use this Fokker-Planck equation to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion-more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible. One method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows down and becomes thermalized into the background plasma, this method of calculating the electron-ion energy splitting breaks down. As a result, it suffers a systematic error that may be as large as T/E-0, where T is the plasma temperature and E-0 is the initial energy of the charged particle. The formalism presented here is designed to account for the thermalization process and it provides results that are near-exact.
机译:布朗,普雷斯顿和辛格尔顿(BPS)已精确计算出高度电离且弱耦合到中等耦合的等离子体中带电粒子的阻止能力,精确到领先和接近领先的等离子体密度。由于BPS的计算技术可能对某些人不熟悉,并且由于相同的方法也可以用于其他能量传输现象,因此我们将回顾计算背后的主要思想。 BPS使用他们的制动力计算得出了Fokker-Planck方程,该方程也精确到领先订单和紧随其后的订单,我们还将对此进行回顾。我们使用此Fokker-Planck方程来计算穿越等离子体的带电粒子的电子离子能量分配。这种应用的动机是进行惯性约束聚变的点火,传递给离子的更多能量意味着点火的机会更大,反之亦然。因此,重要的是尽可能准确地计算出电子和离子的分数能量损失。计算穿越等离子体的带电粒子的电子离子能量分裂的一种方法涉及对停止功率dE / dx进行积分。但是,随着带电粒子变慢并热化为背景等离子体,这种计算电子-离子能量分裂的方法会崩溃。结果,它遭受了可能与T / E-0一样大的系统误差,其中T是等离子体温度,E-0是带电粒子的初始能量。此处提供的形式主义旨在解决热化过程,并提供几乎准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号