首页> 外文期刊>Plasma physics and controlled fusion >Modelling of tokamak glow discharge cleaning II: comparison with experiment and application to ITER
【24h】

Modelling of tokamak glow discharge cleaning II: comparison with experiment and application to ITER

机译:托卡马克辉光放电清洗模型II:与实验的比较及在ITER中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The primary function of the ITER glow discharge cleaning (GDC) system will be the preparation of in-vessel component surfaces prior to the machine start-up. It may also contribute to tritium removal in the nuclear phase. In GDC, conditioning efficiency is strongly dependent on the homogeneity of the flux of ions impinging onto wall surfaces. In order to assess the wall particle flux distribution in ITER, a novel 2D multi-fluid model, described in a companion paper, has recently been developed and is benchmarked here against both experimental glow discharge data obtained in a small laboratory chamber with cylindrical geometry and from two large toroidal devices: the JET tokamak and the RFX reverse field pinch. In the laboratory plasma, simulated and measured plasma electron density and temperature are in a good agreement in the negative glow region, while discrepancies exist in the anode glow, where the fluid description of the model is inaccurate due to long mean free paths of electrons. Calculated and measured ion flux distribution profiles in RFX are found in good agreement, whereas in JET comparison it is more difficult, due to the complex geometry of the first wall which leads to local inhomogeneities in the measured flux. Simulations of H2-GDC for ITER with one or two anodes indicate fairly homogeneous plasma parameters and wall ion flux in the negative glow at 0.5 Pa, a commonly used gas pressure for GDC in existing fusion devices. Although the axisymmetric geometry in the model does not allow all seven ITER anodes to be powered simultaneously in the simulations, the results can be extrapolated to the full system and predict ion current densities on wall surfaces close to the simple expectation of total anode current divided by wall surface area (0.21 A m(-2)), which is relevant to GDC in JET and other machines.
机译:ITER辉光放电清洁(GDC)系统的主要功能是在机器启动之前准备容器中的部件表面。它也可能有助于在核阶段去除tri。在GDC中,调理效率在很大程度上取决于撞击到壁表面的离子通量的均匀性。为了评估ITER中的壁粒子通量分布,最近开发了一种在伴侣论文中描述的新颖的2D多流体模型,并以此为基准,该模型以在具有圆柱形几何形状的小型实验室室内获得的实验辉光放电数据和由两个大型环形设备组成:JET托卡马克和RFX反向场收缩。在实验室等离子体中,模拟和测量的等离子体电子密度和温度在负辉光区域中吻合良好,而在阳极辉光中存在差异,由于电子的平均自由程长,该模型的流体描述不准确。在RFX中计算和测得的离子通量分布曲线非常吻合,而在JET比较中,由于第一壁的复杂几何形状导致测量通量局部不均匀,因此比较困难。具有一个或两个阳极的ITER的H2-GDC的模拟表明,相当均匀的等离子体参数和负辉光下的壁离子通量为0.5 Pa,这是现有聚变设备中GDC的常用气压。尽管模型中的轴对称几何结构不允许在仿真中同时为所有七个ITER阳极供电,但是可以将结果外推到整个系统,并预测壁表面上的离子电流密度,接近简单的总阳极电流除以壁表面积(0.21 A m(-2)),与JET和其他机器中的GDC有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号