首页> 外文期刊>Plasma physics and controlled fusion >Physics fundamentals for ITER
【24h】

Physics fundamentals for ITER

机译:国际热核实验堆的物理基础

获取原文
获取原文并翻译 | 示例
           

摘要

The design of an experimental thermonuclear reactor requires both cutting-edge technology and physics predictions precise enough to carry forward the design. The past few years of worldwide physics studies have seen great progress in understanding, innovation and integration. We will discuss this progress and the remaining issues in several key physics areas. (1) Transport and plasma confinement. A worldwide database has led to an 'empirical scaling law' for tokamaks which predicts adequate confinement for the ITER fusion mission, albeit with considerable but acceptable uncertainty. The ongoing revolution in computer capabilities has given rise to new gyrofluid and gyrokinetic simulations of microphysics which may be expected in the near future to attain predictive accuracy. Important databases on II-mode characteristics and helium retention have also been assembled. (2) Diverters, heat removal and fuelling. A novel concept for heat removal-the radiative, baffled, partially detached divertor-has been designed for ITER. Extensive two-dimensional (2D) calculations have been performed and agree qualitatively with recent experiments. Preliminary studies of the interaction of this configuration with core confinement are encouraging and the success of inside pellet launch provides an attractive alternative fuelling method. (3) Macrostability. The ITER mission can be accomplished well within ideal magnetohydrodynamic (MHD) stability limits, except fdr internal kink modes. Comparisons with JET, as well as a theoretical model including kinetic effects, predict such sawteeth will be benign in ITER. Alternative scenarios involving delayed current penetration or off-axis current drive may be employed if required. The recent discovery of neoclassical beta limits well below ideal MHD limits poses a threat to performance. Extrapolation to reactor scale is as yet unclear. In theory such modes are controllable by current drive profile control or feedback and experiments should be forthcoming soon. Recent results on JET and TFTR have confirmed qualitative understanding of alpha particle driven toroidal Alfven eigenmodes (TAEs). Present predictions for TAE effects in ITER are favourable, but require further work. The large stored energies in ITER have focused attention on disruption physics. Databases for thermal and current quenches, vertical displacement events (VDEs) and halo currents have enabled thermomechanical design. Some questions remain open as to the production, confinement and localization of runaway electrons in potentially unstable plasmas and mitigation strategies have been proposed. Other crucial ITER needs such as diagnostics. control and heating appear to have acceptable solutions. All this rich physics requires experimental validation by a reactor-scale plasma and care has been taken to provide sufficient flexibility for ITER to cover a wide range of scenarios. [References: 10]
机译:实验性热核反应堆的设计既需要尖端的技术,又需要足够精确的物理预测,以推进设计。过去几年的全球物理研究在理解,创新和整合方面取得了长足的进步。我们将讨论这一进展以及几个关键物理领域中剩余的问题。 (1)运输和血浆封闭。全球数据库导致了托卡马克的“经验扩展定律”,尽管存在相当大但可以接受的不确定性,但它预测了对ITER聚变任务的适当限制。不断发展的计算机功能革命已经产生了新的微观物理学的陀螺流体和陀螺动力学模拟,有望在不久的将来实现预测精度。关于II型特征和氦气保留的重要数据库也已建立。 (2)分流器,除热和加油。为ITER设计了一种新颖的散热概念-辐射式,挡板式,部分分离的分流器。已经进行了广泛的二维(2D)计算,并且与最近的实验在质量上吻合。对该结构与堆芯约束的相互作用进行的初步研究令人鼓舞,并且内部药丸发射的成功提供了一种有吸引力的替代加油方法。 (3)宏观稳定性。除fdr内部扭结模式外,在理想的磁流体动力学(MHD)稳定性极限内,可以很好地完成ITER任务。与JET的比较以及包括动力学效应的理论模型预测,这种锯齿在ITER中将是良性的。如果需要,可以采用涉及延迟电流穿透或离轴电流驱动的替代方案。最近发现的新古典Beta限制远低于理想的MHD限制,对性能造成了威胁。外推到反应堆规模尚不清楚。从理论上讲,这种模式可以通过当前的驱动曲线控制或反馈来控制,并且实验应尽快进行。关于JET和TFTR的最新结果已经证实了对α粒子驱动的环形Alfven本征模(TAE)的定性理解。目前对ITER中TAE效应的预测是有利的,但还需要进一步的工作。国际热核实验堆中大量存储的能量已将注意力集中在破坏物理学上。热和电流骤冷,垂直位移事件(VDE)和晕电流的数据库已启用热机械设计。关于在潜在不稳定的等离子体中失控电子的产生,限制和定位,仍然存在一些问题,并且已经提出了缓解策略。其他重要的ITER需求,例如诊断。控制和加热似乎有可接受的解决方案。所有这些丰富的物理知识都需要通过反应堆规模的等离子体进行实验验证,并且已经采取了谨慎措施,以为ITER提供足够的灵活性以涵盖各种情况。 [参考:10]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号