...
首页> 外文期刊>Polymer Composites >Effect of Functionalized Nanosilica on Properties of Polyoxymethylene-Matrix Nanocomposites
【24h】

Effect of Functionalized Nanosilica on Properties of Polyoxymethylene-Matrix Nanocomposites

机译:功能化纳米二氧化硅对聚甲醛基纳米复合材料性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Amino group and methyl group functionalized nanosilica (coded as RNS and DNS) particulates were separately used as nanofillers to prepare polyxymethylene-matrix (denoted as POM-matrix) nanocomposites by melt blending. The tensile strength, Young's modulus, and impact toughness of as-prepared POM-matrix nanocomposites were measured, and their thermal decomposition behavior and crystallization behavior were analyzed by means of thermogravimetric measurement and differential scanning calorimetry and polarized light microscope. Moreover, the morphology of as-prepared POM-matrix nanocomposites was observed with a transmission electron microscope. Results show that incorporating a proper content of RNS and DNS contributes to improve the tensile strength, Young's modulus and impact toughness of POM, and POM-DNS nanocomposites with a high content of inorganic filler have better mechanical properties than POM-RNS counterparts. Besides, POM-matrix nanocomposites have a higher crystallization onset temperature and a smaller grain size than neat POM, which is due to the heterogeneous nucleation effect of DNS and RNS. Moreover, incorporating RNS containing surface amino group helps to increase the thermal stability of POM-RNS nanocomposites and leads to an increase of initial decomposition temperature by about 27C; but the introduction of DNS has little effect on the thermal decomposition behavior of POM. The reason lies in that RNS containing surface amino group can strongly chemically interact with thermal decomposed products of POM (it can absorb formaldehyde and formic acid generated via thermal decomposition of POM) but DNS with surface methyl group cannot absorb formaldehyde and formic acid.
机译:分别将氨基和甲基官能化的纳米二氧化硅(编码为RNS和DNS)颗粒用作纳米填料,通过熔融共混制备聚甲醛基(称为POM基)纳米复合材料。测量了所制备的POM-基质纳米复合材料的拉伸强度,杨氏模量和冲击韧性,并通过热重法,差示扫描量热法和偏光显微镜对它们的热分解行为和结晶行为进行了分析。此外,用透射电子显微镜观察了制备的POM-基质纳米复合材料的形态。结果表明,掺入适当含量的RNS和DNS有助于改善POM的拉伸强度,杨氏模量和冲击韧性,并且含有大量无机填料的POM-DNS纳米复合材料的机械性能优于POM-RNS。此外,POM-基质纳米复合材料比纯POM具有更高的结晶起始温度和更小的晶粒尺寸,这归因于DNS和RNS的异质成核作用。此外,掺入含有表面氨基的RNS有助于提高POM-RNS纳米复合材料的热稳定性,并使初始分解温度提高约27℃。但是DNS的引入对POM的热分解行为影响很小。原因在于,含有表面氨基的RNS可以与POM的热分解产物发生强烈的化学相互作用(它可以吸收通过POM的热分解生成的甲醛和甲酸),而具有表面甲基的DNS不能吸收甲醛和甲酸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号