...
首页> 外文期刊>Precambrian Research >U-Pb, Lu-Hf and Sm-Nd isotopic constraints on provenance and depositional timing of metasedimentary rocks in the western Gawler Craton: Implications for Proterozoic reconstruction models
【24h】

U-Pb, Lu-Hf and Sm-Nd isotopic constraints on provenance and depositional timing of metasedimentary rocks in the western Gawler Craton: Implications for Proterozoic reconstruction models

机译:U-Pb,Lu-Hf和Sm-Nd同位素对Gawler Craton西部准沉积岩物源和沉积时间的约束:对元古代重建模型的启示

获取原文
获取原文并翻译 | 示例
           

摘要

The Gawler Craton forms the bulk of the South Australian Craton and occupies a pivotal location that links rock systems in Antarctica to those in northern Australia. The western Gawler Craton is a virtually unexposed region where the timing of basin development and metamorphism is largely unknown, making the region ambiguous in the context of models seeking to reconstruct the Australian Proterozoic. Detrital zircon data from metasedimentary rocks in the central Fowler Domain in the western Gawler Craton provide maximum depositional ages between 1760 and 1700Ma, with rare older detrital components ranging in age up to 3130Ma. In the bulk of samples, e{open}_(Nd(1700Ma)) values range between -4.3 and -3.8. The combination of these data suggest on average, comparatively evolved but age-restricted source regions. Lu-Hf isotopic data from the ca 1700Ma aged zircons provide a wide range of values (e{open}_(Hf(1700Ma)) +6 to -6). Monazite U-Pb data from granulite-grade metasedimentary rocks yield metamorphic ages of 1690-1670Ma. This range overlaps with and extends the timing of the widespread Kimban Orogeny in the Gawler Craton, and provides minimum depositional age constraints, indicating that basin development immediately preceded medium to high grade metamorphism. The timing of Paleoproterozoic basin development and metamorphism in the western Gawler Craton coincides with that in the northern and eastern Gawler Craton, and also in the adjacent Curnamona Province, suggesting protoliths to the rocks within the Fowler Domain may have originally formed part of a large ca 1760-1700. Ma basin system in the southern Australian Proterozoic. Provenance characteristics between these basins are remarkably similar and point to the Arunta Region in the North Australian Craton as a potential source. In this context there is little support for tectonic reconstruction models that: (1) suggest components of the Gawler Craton accreted together at different stages in the interval ca 1760-1680. Ma; and (2) that the North Australian Craton and the southern Australian Proterozoic were separate continental fragments between 1760 and 1700. Ma.
机译:高勒克拉通(Gawler Craton)构成了南澳大利亚克拉通的主体,并处于一个关键位置,将南极洲的岩石系统与澳大利亚北部的岩石系统连接起来。西部的Gawler Craton是一个几乎未暴露的地区,盆地发育和变质的时间基本上未知,因此在试图重建澳大利亚元古代的模型的背景下,该地区变得模棱两可。来自Gawler Craton西部Fowler域中部沉积岩的碎屑锆石数据提供的最大沉积年龄在1760-1700Ma之间,稀有的较旧碎屑成分的年龄可达3130Ma。在大部分样本中,e {open} _(Nd(1700Ma))值的范围介于-4.3和-3.8之间。这些数据的组合显示出平均,相对进化但受年龄限制的源区域。来自大约1700Ma年龄的锆石的Lu-Hf同位素数据提供了广泛的值(e {open} _(Hf(1700Ma))+6至-6)。花岗岩级变质沉积岩中的独居石U-Pb数据产生的变质年龄为1690-1670Ma。该范围与高勒克拉通地区广泛的金班造山运动重叠并延长了时间,并提供了最小的沉积年龄限制,这表明盆地的发育早于中到高级变质作用。西部的Gawler Craton的古元古代盆地发育和变质的时间与北部和东部的Gawler Craton以及毗邻的Curnamona省的时间一致,这表明Fowler域内岩石的原生石可能最初是大加利福尼亚地区的一部分。 1760-1700。澳大利亚南部元古代的盆地盆地。这些盆地之间的物源特征非常相似,并指出了北澳大利亚克拉通的阿伦塔地区是潜在的来源。在这种情况下,几乎不支持以下构造重建模型:(1)建议在大约1760至1680年的间隔中,不同阶段的Gawler Craton组成部分一起增生。嘛; (2)北澳大利亚的克拉通和南澳大利亚的元古代是1760年至1700年之间的独立大陆碎片。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号