...
首页> 外文期刊>Proceedings of the Royal Society. Mathematical, physical and engineering sciences >Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides
【24h】

Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides

机译:实际非线性斜坡几何对海底滑坡灾难性破坏的意义

获取原文
获取原文并翻译 | 示例
           

摘要

A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravitational and seismically induced shear stresses are smaller than the peak but larger than the residual shear strength of the soil. Growth of a shear band is strongly dependent on the shape of the slope, seismic parameters and the strength of soil and less dependent on the slope inclination and the sensitivity of clay. For the slope surface with faster changing inclination, the criterion is more sensitive to the changes of the parameters. Accounting for the actual nonlinear slope geometry eliminates the main challenge of the SBP approach-determination of the length of the initial weak zone, because the slope geometry can be readily obtained from submarine site investigations. It also helps to identify conditions for the early arrest of the shear band, before failure in the sliding layer or a change in loading or excess pore water pressures occurs. The difference in the size of a landslide predicted by limiting equilibrium and SBP approaches can reach orders of magnitude, potentially providing an explanation for the immense dimensions of many observed submarine landslides that may be caused by local factors acting over a limited portion of the slope.
机译:通过扩展剪切带传播(SBP)理论,提出了一种简单的自然发生的,缓和的非线性边坡稳定性分析的方法。最初的薄弱区域出现在斜坡最陡的部分,重力和地震载荷的共同作用克服了土壤退化的峰值抗剪强度。如果该最陡部分的长度大于临界长度,则剪切带将传播到斜坡的准稳定部分,在那里重力和地震诱发的剪应力小于峰值,但大于残余剪力。土壤。剪切带的增长在很大程度上取决于斜坡的形状,地震参数和土壤的强度,而较少取决于斜坡的倾斜度和粘土的敏感性。对于坡度变化较快的坡面,判据对参数的变化更敏感。考虑到实际的非线性斜坡几何形状消除了SBP方法确定初始薄弱区域长度的主要挑战,因为可以从海底现场调查中轻松获得斜坡几何形状。它还有助于确定在滑动层失效或载荷变化或孔隙水压力超标发生之前,剪切带早停的条件。通过极限平衡和SBP方法预测的滑坡大小差异可能达到数量级,可能为许多观察到的海底滑坡的巨大尺寸提供了解释,这些尺寸可能是由作用于斜坡有限部分上的局部因素引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号