...
首页> 外文期刊>The European Journal of Neuroscience >Shifting and scaling adaptation to dynamic stimuli in somatosensory cortex.
【24h】

Shifting and scaling adaptation to dynamic stimuli in somatosensory cortex.

机译:体感皮层中动态刺激的移位和缩放适应。

获取原文
获取原文并翻译 | 示例
           

摘要

Recent reports have shown that responses of midbrain neurons in the guinea pig rapidly shift the dynamic range of their responses to track changes in the statistics of ongoing sound-level distributions. This results in an increased coding accuracy for the most commonly occurring stimulus intensities. To investigate whether this type of adaptation might also be found in other sensory modalities, we characterized the intensity-response functions of neurons in rat primary somatosensory cortex (S1) to continuous sinusoidal vibration of the whiskers with amplitudes that were changed every 40 ms. Vibration amplitudes were selected randomly such that there was an 80% chance for the amplitude to be drawn from a relatively narrow 'high-probability region' (HPR). Stimulus mean and variance were then manipulated by shifting or widening the HPR. We found that rat S1 neurons adapt to shifts of the HPR mainly by shifting their thresholds, and to changes in HPR width by changing the slope of their rate-level curves. Using realistic single-neuron models, we go on to show that after-hyperpolarizing currents, such as those carried by K(Ca)(2+) channels, may be responsible for the threshold shifts, but not the slope changes.
机译:最近的报告表明,豚鼠中脑神经元的反应迅速改变了其反应的动态范围,以跟踪正在进行的声级分布的统计变化。这导致最常见的刺激强度的编码精度提高。为了研究是否也可以在其他感觉方式中找到这种类型的适应性,我们将大鼠初级体感皮层(S1)中神经元的强度响应功能表征为晶须的连续正弦振动,其振幅每40 ms改变一次。随机选择振动振幅,以便有80%的机会从相对较窄的“高概率区域”(HPR)中提取振幅。然后通过移动或加宽HPR来操纵刺激的均值和方差。我们发现大鼠S1神经元主要通过改变其阈值来适应HPR的变化,并通过改变其速率水平曲线的斜率来适应HPR宽度的变化。使用现实的单神经元模型,我们继续表明,超极化后电流(例如由K(Ca)(2+)通道携带的电流)可能是阈值漂移的原因,而不是斜率变化的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号