首页> 外文期刊>The European physical journal, D. Atomic, molecular, and optical physics >New characteristics of a resonant coupling between an analyte-filled core mode and a supermode of a liquid-core photonic crystal fiber based plasmonic sensor
【24h】

New characteristics of a resonant coupling between an analyte-filled core mode and a supermode of a liquid-core photonic crystal fiber based plasmonic sensor

机译:基于分析物的芯模和基于液芯光子晶体光纤的等离子体传感器超模型之间共振耦合的新特性

获取原文
获取原文并翻译 | 示例
           

摘要

A new fiber optic sensor recently proposed for sensing an analyte with a large refractive index, such as benzene, is investigated using a finite element method in order to optimize its sensitivity. The device exploits the resonant coupling between some modes in a microstructured optical fiber made by a SiO_2 rod with several holes, some filled with air, some filled with a liquid analyte, and a central hollow core surrounded by a gold layer and filled with the analyte as well. The structure presents three resonant frequencies, at λ = 0.7105 μm, λ = 2.611 μm and λ = 1.094 μm, depending on the hollow core radius and the different couplings between guided and polariton modes. The first resonant coupling, at λ = 0.7105 μm, is due to a perfect phase matching condition between a mode in the analyte and a supermode; its advantages are a small value of the full width at half maximum (8.6 nm), and a high value of the signal-to-noise ratio (0.29). The second resonant coupling, at λ = 2.611 μm, is due to a loss matching condition between a supermode and a plasmon mode, and its main advantages are large spectral sensitivity and sensor resolution (1.3 × 10~(?6) RIU). This resonance has also some disadvantages due to a very large value of the full width at half maximum (102 nm for a symmetric line shape), and a small value of the signal-to-noise ratio (0.13). The third resonant coupling is at λ = 1.094 μm and is related again to a phase matching condition between a supermode and a plasmon mode, but for a smaller value of the radius of the central core filled with the analyte. Its advantages are a high value of the amplitude sensitivity (5741.2 RIU~(?1)) and a better value of the sensor resolution (1.74 × 10~(?6) RIU). The major disadvantages of this structure are a small value of the shift (1.0 nm) towards longer wavelengths of the phase matching point for an increase of the analyte refractive index by 0.001 RIU, a small value of the signal-to-noise ratio (0.03) and a small value of the spectral sensitivity (1000 nm RIU~(?1)).
机译:最近使用有​​限元方法研究了一种新的光纤传感器,该传感器可用于感测大折射率的分析物,例如苯,以优化其灵敏度。该设备利用了由SiO_2棒制成的微结构光纤中某些模式之间的共振耦合,该棒具有几个孔,一些充满空气,一些充满液体分析物,以及由金层包围并充满分析物的中央空心核也一样该结构呈现三个共振频率,分别为λ= 0.7105μm,λ= 2.611μm和λ= 1.094μm,具体取决于空心半径和引导模式与极化子模式之间的不同耦合。 λ= 0.7105μm时的第一共振耦合是由于分析物的模式与超模式之间存在完美的相位匹配条件所致。它的优点是半峰全宽的值小(8.6 nm),信噪比高的值(0.29)。 λ= 2.611μm时的第二次共振耦合是由于超模和等离激元模之间的损耗匹配条件引起的,其主要优点是光谱灵敏度高和传感器分辨率高(1.3×10〜(?6)RIU)。由于半峰全宽的值非常大(对称线形为102 nm),信噪比的值很小(0.13),因此该谐振也有一些缺点。第三共振耦合在λ=1.094μm处,并且再次与超模式和等离子体激元模式之间的相位匹配条件有关,但是对于填充有分析物的中心核的半径的较小值。它的优点是幅值灵敏度高(5741.2 RIU〜(?1))和传感器分辨率更好(1.74×10〜(?6)RIU)。这种结构的主要缺点是,对于较长的相位匹配点波长,其偏移值很小(1.0 nm),从而使分析物的折射率增加0.001 RIU,而信噪比的值很小(0.03) )和较小的光谱灵敏度(1000 nm RIU〜(?1))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号