...
首页> 外文期刊>Bulletin of the Chemical Society of Japan >Ultrafast Dynamics in Biological Systems and in Nano-Confined Environments
【24h】

Ultrafast Dynamics in Biological Systems and in Nano-Confined Environments

机译:生物系统和纳米受限环境中的超快速动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Ultrafast chemical dynamics in a nano-confined system is very different from that in a bulk liquid.In this account,we give an overview on recent femtosecond study on dynamics of ultrafast chemical processes in the nanocavity of a biological system.Dynamics in a biological system crucially depends on the location of the fluorescent probe.We show that one can study solvation dynamics in different regions(i.e.spatially resolve)by variation of the excitation wavelength.We discuss two interesting cases of how structure affects dynamics.First,solvation dynamics of two protein folding intermediates of cytochrome c is found to be differ significantly in the ultrafast initial part(<20ps).Second,methyl substitution of the OH group in a cyclodextrin is shown to slow down the initial part of solvation dynamics quite dramatically.The most interesting observation is the discovery of the ultraslow component of solvation dynamics which is 100-1000 times slower compared to bulk water.The electron-and proton-transfer processes in a nano-confined system are found to be markedly retarded because of slow solvation and structural constraints.Close proximity of the reactants in a confined system is expected to accelerate dynamics of bi-molecular processes.This is illustrated by ultrafast fluorescence resonance energy transfer(FRET)in ≈1 ps time scale between a donor and an acceptor in a micelle.Finally,it is demonstrated that the decay of fluorescence anisotropy provides structural information(e.g.size of a cyclodextrin inclusion complex)and may be used to detect formation of a nano-aggregate.
机译:纳米密闭系统中的超快化学动力学与散装液体中的化学动力学有很大不同。因此,我们概述了飞秒研究生物系统纳米腔中超快化学过程动力学的过程。关键在于荧光探针的位置。我们表明,一个人可以通过激发波长的变化研究不同区域(独立分辨)中的溶剂化动力学。我们讨论了两个有趣的结构如何影响动力学的情况。首先,两个的溶剂化动力学发现细胞色素c的蛋白折叠中间体在超快起始部分(<20ps)有显着差异。第二,环糊精中OH基的甲基取代显示出极大地减缓了溶剂化动力学的起始部分。观察到的发现是溶剂化动力学的超慢成分,它比散装水慢100-1000倍。发现纳米受限系统中的roton转移过程由于缓慢的溶剂化和结构限制而显着受阻,密闭系统中反应物的紧密接近有望加速双分子过程的动力学,这可以通过超快荧光来说明。胶束中供体和受体之间在约1 ps的时间尺度上发生共振能量转移(FRET)。最后,证明了荧光各向异性的衰减提供了结构信息(例如环糊精包合物的大小),可用于检测纳米聚集体的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号