...
首页> 外文期刊>Protoplasma: An International Journal of Cell Biology >Controlling the geometry and the coupling strength of the oscillator system in plasmodium of Physarum polycephalum by microfabricated structure
【24h】

Controlling the geometry and the coupling strength of the oscillator system in plasmodium of Physarum polycephalum by microfabricated structure

机译:通过微细结构控制多头Phys浆体中振荡器系统的几何形状和耦合强度

获取原文
获取原文并翻译 | 示例
           

摘要

The plasmodium of the true slime mold Physarum polycephalum, which shows various oscillatory phenomena, can be regarded as a collective of nonlinear oscillators. Partial bodies in the plasmodium, which are assumed to be nonlinear oscillators, are mutually connected by microscale tubes named plasmodial strand. The interactions among the oscillators can be strongly affected by the geometry and the dimension of the tube network. Investigation of the collective behavior under the condition that the configuration of the network can be manipulated gives significant information on the characteristics of the plasmodium from the viewpoint of nonlinear dynamics. In this study, we have developed a new method to control the geometry and the tube dimension of the plasmodium with a microfabricated structure. It is shown that the geometry of the plasmodium can be manipulated with a microstructure which is fabricated of ultrathick photoresist resin by photolithographic processes. In order to confirm that not only the geometry but also the dimension of the tubes can be controlled with the microstructure, we observed the cross section of the patterned plasmodium with a three-dimensional internal-structure microscope. By observing the oscillatory behavior of the partial bodies of the patterned plasmodium, it was confirmed that the coupling strength between two oscillators, which corresponds to the dimension of the plasmodial strand. can be controlled by the microstructure. It is concluded that the present method is suitable for further studies of the network of Physarum plasmodium as a collective nonlinear oscillator system. [References: 18]
机译:真正的粘液霉菌多头Phys浆虫的疟原虫表现出各种振荡现象,可以认为是非线性振荡器的集合。疟原虫中的部分体被认为是非线性振荡器,它们通过称为等离体链的微尺度管相互连接。振荡器之间的相互作用会受到管网的几何形状和尺寸的强烈影响。从网络动力学的角度出发,在可以操纵网络配置的条件下对集体行为进行研究,可以提供有关疟原虫特征的重要信息。在这项研究中,我们开发了一种新的方法来控制具有微细结构的疟原虫的几何形状和管子尺寸。结果表明,可以通过显微结构控制纤毛虫的几何形状,该显微结构由超厚光致抗蚀剂树脂通过光刻工艺制成。为了确认不仅可以通过微结构来控制管的几何形状,而且可以通过微结构来控制管的尺寸,我们还使用三维内部结构显微镜观察了图案化的疟原虫的横截面。通过观察图案化的疟原虫的部分体的振荡行为,证实了两个振荡器之间的耦合强度,其对应于疟原虫链的尺寸。可以通过微观结构来控制。可以得出结论,本方法适合于进一步研究作为集合非线性振荡器系统的Physarum疟原虫的网络。 [参考:18]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号