首页> 外文期刊>The Journal of Chemical Physics >TRAJECTORY CALCULATIONS OF RELATIVE CENTER OF MASS VELOCITIES IN COLLISIONS BETWEEN AR AND TOLUENE
【24h】

TRAJECTORY CALCULATIONS OF RELATIVE CENTER OF MASS VELOCITIES IN COLLISIONS BETWEEN AR AND TOLUENE

机译:AR和甲苯之间碰撞中相对速度的轨迹计算

获取原文
获取原文并翻译 | 示例
           

摘要

Average velocities of Ar relative to the center of mass of toluene in bimolecular collisions were determined using quasiclassical trajectory calculations. The collision durations were binned in 20 fs and 100 fs bins and for each bin the velocities of all trajectories were averaged. 10000 trajectories were calculated. About 64% of all collisions were elastic and the rest were inelastic collisions. The remaining 36% inelastic collisions can be classified into four types. (a) Impulsive collisions of duration 0-300 fs (62%). (b) Chattering collisions of duration longer than 300 fs but Shorter than intramolecular vibrational relaxation (IVR) times (>30%). (c) Complex forming collisions which last longer than molecular IVR times but less than complex (molecular+transition modes) IVR times and complex forming collisions which last longer than complex IVR times. The latter may lead to statistical distribution of energy in the collision complex. These long lived trajectories have negligible contribution to the value of the average energy transferred. (d) Supercollisions (0.12%) which are collisions which transfer an inordinate amount of energy in one event. The details of the collisional process are discussed and sample distributions are presented. Analysis of the collision events indicate that out-of-plane vibrations and overall rotations play a major role in the energy transfer mechanism. A comparison with existing analytical energy transfer models is presented and it is shown that some of them do not agree with the present trajectory calculation results. It is suggested that supercollisions in the gas phase and in solution play a major role in chemical reactions. (C) 1996 American Institute of Physics. [References: 43]
机译:使用准经典轨迹计算确定了在双分子碰撞中Ar相对于甲苯质心的平均速度。碰撞持续时间分为20 fs和100 fs的仓位,对于每个仓位,将所有轨迹的速度平均。计算了10000条轨迹。所有碰撞中约有64%为弹性碰撞,其余为非弹性碰撞。剩下的36%的非弹性碰撞可以分为四种类型。 (a)持续时间为0-300 fs(62%)的脉冲碰撞。 (b)持续时间大于300 fs但比分子内振动弛豫(IVR)时间短(> 30%)的颤动碰撞。 (c)持续时间长于分子IVR时间但小于复杂(分子+过渡模式)IVR时间的复杂形成碰撞和持续时间长于复杂IVR时间的复杂形成碰撞。后者可能导致碰撞复合体中能量的统计分布。这些长寿命的轨迹对转移的平均能量值的贡献可忽略不计。 (d)超碰撞(0.12%),是一次事件中传递过多能量的碰撞。讨论了碰撞过程的细节,并介绍了样品分布。对碰撞事件的分析表明,平面外振动和整体旋转在能量传递机制中起主要作用。与现有的分析能量转移模型进行了比较,结果表明它们中的一些与当前的轨迹计算结果不一致。有人认为,气相和溶液中的超碰撞在化学反应中起主要作用。 (C)1996年美国物理研究所。 [参考:43]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号