...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Continuum Solvent Modeling of Nonpolar Solvation: Improvement by Separating Surface Area Dependent Cavity and Dispersion Contribuitons
【24h】

Continuum Solvent Modeling of Nonpolar Solvation: Improvement by Separating Surface Area Dependent Cavity and Dispersion Contribuitons

机译:非极性溶剂的连续溶剂建模:通过分离表面积相关的腔和色散贡献来改进

获取原文
获取原文并翻译 | 示例
           

摘要

Continuum models are frequently used to calculate hydration properties of organic and biomolecules and to estimate its dependence on conformation and association. Often a single surface tension parameter has been used to estimate nonpolar solvation contributions from the solvent accessible surface of a molecule. The assumption of a uniform surface tension parameter is based on the observation that for linear alkanes free energies of hydration (vacuum to water transfer free energies) increase (approximately) linearly with the solvent accessible surface area (SAS). However, this correlation for example does not hold for the vacuum to water transfer of cyclic alkanes. The transfer of a nonpolar solute from vacuum to water can be formally split into a contribution due to cavity formation which involves a redistribution and reordering of water molecules and changes in water-water interaction and second van der Waals (dispersion) interactions between solute and water. In the present study, the solute solvent dispersion contributions has been calculated using a surface integral continuum approach (Floris, F.; Tomasi, J. J. Comput. Chem. 1989, 10, 616-627). Combined with a cavity contribution that has been assumed to be proportional to the solent accessible surface area calculated hydration free energies for linear, branched and cyclic alkanes are in significantly better agreement with experiment than using a pure SAS model. In addition, the calculated changes of hydration free energies upon alkane conformational changes agree much better with results of explicit solvent simulations compared to a model that employs a single surface tension parameter.
机译:连续谱模型经常用于计算有机分子和生物分子的水合特性,并估计其对构象和缔合的依赖性。通常,单个表面张力参数已用于估计分子的溶剂可及表面的非极性溶剂化作用。表面张力参数均一的假设是基于以下观察结果:对于线性烷烃,水合自由能(真空至水转移自由能)随溶剂可及表面积(SAS)线性增加(大约)。然而,这种相关性例如不适用于环状烷烃的真空至水的转移。非极性溶质从真空到水的转移可以由于腔的形成而正式地分成一部分,这涉及水分子的重新分布和重新排序以及溶质与水之间水-水相互作用和第二范德华力(分散)相互作用的变化。在本研究中,已经使用表面积分连续体方法计算了溶质溶剂的分散作用(Floris,F .; Tomasi,J. J. Comput。Chem。1989,10,616-627)。相较于使用纯SAS模型,结合已被假定与潜在可及表面积成比例的空穴贡献,计算得出的线性,支链和环状烷烃的水合自由能与实验显着更好地吻合。另外,与采用单一表面张力参数的模型相比,计算出的烷烃构象变化时水合自由能的变化与显式溶剂模拟的结果吻合得更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号