...
【24h】

Kinetic and Mechanism of the Gas-Phase Reaction of Cl Atoms with Benzene

机译:Cl原子与苯气相反应的动力学及机理

获取原文
获取原文并翻译 | 示例
           

摘要

The gas-phase reaction of Cl atoms with benzene has been studied using both experimental and computational methods. The bulk of the kinetic data were obtained using steady-state photolysis of mixtures containing Cl_2, C_6H_6, and a reference compound in 120-700 Torr of N_2 diluent at 296 K. Reaction of Cl atoms with C_6H_6 proceeds via two pathways; (a) H-atom abstraction and (b) adduct formation. At 296 K the rate constant for the abstraction channel is k_(1a) = (1.3 ± 1.0) * 10~(-16) cm~3 molecules~(-1) s~(-1). Phenyl radicals produced via H-atom abstraction from C_6H_6 react with Cl_2 to give chlorobenzene. The main fate of the C_6H_6-Cl adduct is decomposition to reform C_6H_6 and Cl atoms. A small fraction of the C_6H_6-Cl adduct undergoes reaction with Cl atoms via a mechanism which does not lead to the production of C_6H_5Cl_, or the reformation of C_6H_6. As the steady-state Cl atom concentration is increased, the fraction of the C_6H_6-Cl adduct undergoing reaction with Cl atoms increases causing an increase in the effective rate constant for benzene removal and a decrease in the chlorobenzene yield. Thermodynamic calculations show that a rapid equilibrium is established between Cl atoms, C_6H_6, and the C_6H_6-Cl adduct, and it is estimated that at 296 K the equilibrium constant is K_(c, 1b) = [C_6H_6-Cl]/[C_6H_6][Cl] and lies in the range (1-2) * 10~(-18) cm~3 molecule. ~1 Flash photolysis experiments conducted using C_6H_6/Cl_2 mixtures in 760 Torr of either N_2 or O_2 diluent at 296 K did not reveal any significant transient UV absorption; this is entirely consistent with results from the steady-state experiments and the thermodynamic calculations. The C_6H_6-Cl adduct reacts slowly (if at all) with O_2 and an upper limit of k(C_6H_6-Cl + O_2) < 8 * 10~(-17) cm~3 molecule~(-1) s~(-1) was established. As part of this work a value of k(Cl + CF_2ClH) = (1.7 ± 0.1) * 10~(15) cm~3 molecule~(-1) s~(-1) was measured. These results are discussed with respect to the available literature concerning the reaction of Cl atoms with benzene.
机译:已经使用实验和计算方法研究了Cl原子与苯的气相反应。大量的动力学数据是通过在296 K下在120-700 Torr的N_2稀释剂中对含Cl_2,C_6H_6和参考化合物的混合物进行稳态光解获得的。Cl原子与C_6H_6的反应通过两个途径进行: (a)H原子的提取和(b)加合物的形成。在296 K时,抽象通道的速率常数为k_(1a)=(1.3±1.0)* 10〜(-16)cm〜3分子〜(-1)s〜(-1)。通过C_6H_6的H原子抽象产生的苯基与Cl_2反应生成氯苯。 C_6H_6-Cl加合物的主要命运是分解以重整C_6H_6和Cl原子。 C_6H_6-Cl加合物中的一小部分通过不会导致C_6H_5Cl_生成或C_6H_6重整的机理与Cl原子反应。随着稳态Cl原子浓度的增加,与Cl原子反应的C_6H_6-Cl加合物的分数增加,导致除苯有效速率常数增加,氯苯产率降低。热力学计算表明,Cl原子,C_6H_6和C_6H_6-Cl加合物之间建立了快速平衡,并且估计在296 K时平衡常数为K_(c,1b)= [C_6H_6-Cl] / [C_6H_6] [Cl]的范围为(1-2)* 10〜(-18)cm〜3分子。使用C_6H_6 / Cl_2混合物在760 Torr的N_2或O_2稀释剂中在296 K下进行的〜1快速光解实验没有发现任何明显的瞬时UV吸收。这与稳态实验和热力学计算的结果完全一致。 C_6H_6-Cl加合物与O_2反应缓慢(如果有的话),并且上限k(C_6H_6-Cl + O_2)<8 * 10〜(-17)cm〜3分子〜(-1)s〜(-1 ) 建立了。作为这项工作的一部分,测量了k(Cl + CF_2ClH)=(1.7±0.1)* 10〜(15)cm〜3分子〜(-1)s〜(-1)的值。关于关于Cl原子与苯反应的现有文献讨论了这些结果。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号