...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Coulomb Repulsion at the Nanometer-Sized Contact: A Force Driving Superhydrophobicity, Superfluidity, Superlubricity, and Supersolidity
【24h】

Coulomb Repulsion at the Nanometer-Sized Contact: A Force Driving Superhydrophobicity, Superfluidity, Superlubricity, and Supersolidity

机译:纳米级接触的库仑排斥力:推动超疏水性,超流动性,超润滑性和超固性的力量

获取原文
获取原文并翻译 | 示例
           

摘要

Superhydrophobicity, superfluidity, superlubricity, and supersolidity (4S) at the nanometer-sized liquid-solid or solid-solid contacting interfaces have long been issues of puzzling with the common characteristics of nonsticky and frictionless motion. Although the 4S occurrences have been extensively investigated, the mechanism behind the common characteristics remains unclear. From the perspectives of broken-bond-induced local strain and the skin-depth charge and energy quantum trapping and the associated nonbonding electron polarization, we proposed herewith that the Coulomb repulsion between the "electric monopoles or dipoles locked in the elastic solid skins or the solidlike covering sheets of liquid droplets" forms the key to the 4S. The localized energy densiflcation makes the skin stiffer and the densely and tightly trapped bonding charges polarize nonbonding electrons, if exist, to form locked skin monopoles. In addition, the sp-orbit hybridization of F, O, N, or C upon reacting with solid atoms generates nonbonding lone pairs or unpaired edge electrons that induce dipoles directing into the open end of a surface. The monopoles and dipoles can be, however, demolished by UV radiation, thermal excitation, or excessively applied compression due to ionization or sp orbit dehybridization. Such a Coulomb repulsion between the negatively charged skins of the contacting objects not only lowers the effective contacting force and hence the friction but also prevents charge from being exchanged between the counterparts of the contact. Being similar to magnetic levitation, such Coulomb repulsion should be the force driving the 4S. Density function theory calculations, X-ray photoelectron spectroscopy, scanning tunneling microscopy/spectroscopy, and very low energy electron diffraction measurements have been conducted to verify the proposal. In particular, agreement between theory predictions and the measured size dependence of the elastic modulus, lattice strain, core-electron binding energy shift, and band gap expansion of nanostructures evidence the validity of the proposal of interface Coulomb repulsion.
机译:长期以来,纳米级的液-固或固-固接触界面的超疏水性,超流动性,超润滑性和超固体(4S)一直困扰着人们,它们具有非粘性和无摩擦运动的共同特征。尽管已经对4S事件进行了广泛研究,但共同特征背后的机制仍不清楚。从断裂键诱导的局部应变,趋肤深度电荷和能量量子陷阱以及相关的非键电子极化的角度,我们提出“锁定在弹性固体蒙皮或固体中的电单极子或偶极子之间的库仑排斥”。固体状的液滴覆盖层”构成了4S的关键。局部能量的致密化使皮肤变硬,并且紧密紧密地捕获的键合电荷会使非键合电子极化(如果存在),从而形成锁定的皮肤单极子。另外,F,O,N或C与固态原子反应时的sp-轨道杂交会产生非键孤对或未成对的边缘电子,从而诱发偶极子直接进入表面的开放端。但是,单极和偶极子可能会由于紫外线辐射,热激发或由于电离或sp轨道去杂化而过度施加压缩而被破坏。接触物体的带负电的皮肤之间的这种库仑排斥力不仅降低了有效接触力,从而降低了摩擦,而且还防止了电荷在触点的对应部分之间交换。与磁悬浮相似,这种库仑斥力应该是驱动4S的力。已经进行了密度函数理论计算,X射线光电子能谱,扫描隧道显微镜/能谱以及非常低能的电子衍射测量来验证该建议。特别是,理论预测与测得的尺寸依赖性的弹性模量,晶格应变,核电子结合能移动和纳米结构的带隙扩展之间的一致性证明了界面库仑排斥提议的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号