首页> 外文期刊>The Journal of Prosthetic Dentistry >Accuracy of three corrective techniques for implant bar fabrication.
【24h】

Accuracy of three corrective techniques for implant bar fabrication.

机译:种植棒制造的三种校正技术的准确性。

获取原文
获取原文并翻译 | 示例
           

摘要

STATEMENT OF THE PROBLEM: Numerous articles emphasize the importance of passivity of implant-prosthetic component interfaces. Nonpassive interfaces can lead to bone loss, abutment fracture, and connecting screw breakage. PURPOSE: The purpose of this study was to evaluate 3 postcasting techniques for the correction of non-passive fit between a cast bar superstructure and its interface with an implant abutment. MATERIAL AND METHODS: Thirty implant Hader bars were fabricated based on a metal model composed of two 3.8/4.5 HL PME titanium implant abutments. Initial measurements were collected on the y-axis of the left implant abutment-bar interface by using a M2001ARS toolmaker microscope. Means were calculated from buccal, distal, and lingual measurements on each specimen. Ten specimens were sectioned, indexed, and corrected by casting the same alloy (group 1). Ten specimens were sectioned, indexed, and corrected by soldering (group 2). The last 10 specimens were submitted to 2 cycles of electrical discharge machining on a MedArc M-2 EDM machine (group 3). Postcorrection measurements were collected on the 3 groups. A 1-way ANOVA and a Tukey-Kramer test at a 0.05 significance level were performed on the 3 groups after the corrective techniques. RESULTS: Initial gap means were 192 microm for group 1, 190 microm for group 2, and 198 microm for group 3. There was a significant difference (P<0.05) in gap means between group 1 (15 microm) and group 2 (72 microm) as well as between group 2 and group 3 (7.5 microm) after each correction technique. No difference was detected between group 1 and group 3. CONCLUSION: The electrical discharge machining group resulted in the smallest mean gap distance of 7.5 microm, thus meeting the criteria of passive fit (within 10 microm) described in the literature.
机译:问题陈述:许多文章都强调了植入物-假体组件界面被动性的重要性。非被动界面可能会导致骨丢失,基台骨折以及连接螺钉断裂。目的:本研究的目的是评估3种后浇铸技术,以校正铸棒上部结构及其与种植体基台之间的界面之间的非被动配合。材料与方法:根据金属模型制作了三十个Hader植入杆,该金属模型由两个3.8 / 4.5 HL PME钛植入物基台组成。通过使用M2001ARS工具制造商显微镜,在左侧种植体基台-杆界面的y轴上收集初始测量值。通过对每个样本的颊,远端和舌测量来计算平均值。通过铸造相同的合金(第1组)对十个试样进行切片,索引和校正。将十个样品切成薄片,标定索引并通过焊接进行校正(第2组)。最后10个样品在MedArc M-2 EDM机床(第3组)上进行了2个放电加工循环。在3组上收集校正后的测量值。校正技术后,对3组进行了1路ANOVA和0.05水平的Tukey-Kramer检验。结果:第一组的初始间隙平均值为192微米,第2组的初始间隙平均值为190微米,第3组的初始间隙平均值为198微米。第1组(15微米)与第2组(72微米)之间的间隙平均值存在显着差异(P <0.05)。每种校正技术后)以及第2组和第3组之间(7.5微米)。在第1组和第3组之间未检测到差异。结论:放电加工组的最小平均间隙距离为7.5微米,因此符合文献中所述的被动配合标准(10微米以内)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号