...
首页> 外文期刊>The New Phytologist >Elevated atmospheric CO_2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula x Populus tremuloides)
【24h】

Elevated atmospheric CO_2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula x Populus tremuloides)

机译:大气CO_2浓度升高导致杂种白杨(Populus tremula x Populus tremuloides)的全植物异戊二烯排放增加

获取原文
获取原文并翻译 | 示例
           

摘要

Effects of elevated atmospheric [C02] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [COj] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [C02] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [C02] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula x Populus tremuloides) grown under 380 and 780 u.mol moT1 [C02]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [C02]-grown plants was developed. Plants grown under elevated [C02] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [C02].However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [C02] as a result of enhanced leaf area production.
机译:大气中二氧化碳浓度升高对植物异戊二烯排放的影响是有争议的。依靠叶片规模的测量,大多数模拟未来更高[COj]大气中异戊二烯排放的模型表明排放通量减少了。然而,很少在冠层尺度上研究升高的[CO 2]对叶面积生长,净同化和异戊二烯排放速率的综合影响,但是叶面积生长的刺激可以在很大程度上补偿在叶尺度上报道的可能的[CO 2]抑制。这项研究检验了以下假设:刺激叶面积的增长导致冠层异戊二烯的排放速率增加。我们研究了在380和780 u.mol moT1 [C02]下生长的杂交白杨(Populus tremula x Populus tremuloides)的冠层生长动态以及净同化和异戊二烯排放速率。建立了一个基于Chapman-Richards函数的理论框架,该模型可以对树冠生长进行建模,并在数值上比较在环境中和大气中[CO2]生长的植物之间的生长动力学。在升高的[CO 2]下生长的植物具有更高的碳氮比,更大的总叶面积,冠层净同化和异戊二烯排放速率。在个体发育过程中,这些关键冠层特征在升高的[CO2]下发展更快,并且更早稳定下来。但是,在整个叶面积上,叶片的生理特性在整个实验过程中都保持短暂状态。这些结果表明,冠层尺度的动态重要地补充了叶尺度的过程,并且由于增加的叶面积产生,异戊二烯的排放实际上可能在较高的[CO2]下增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号