首页> 外文期刊>Chemphyschem: A European journal of chemical physics and physical chemistry >Nanostructure-directed physisorption vs chemisorption at semiconductor interfaces: The inverse of the HSAB concept
【24h】

Nanostructure-directed physisorption vs chemisorption at semiconductor interfaces: The inverse of the HSAB concept

机译:纳米结构指导的物理吸附与半导体界面化学吸附:HSAB概念的反面

获取原文
获取原文并翻译 | 示例
           

摘要

A concept, complementary to that of hard and soft acid-base interactions (HSAB-dominant chemisorption) and consistent with dominant physisorption to a semiconductor interface, is presented. We create a matrix of sensitivities and interactions with several basic gases. The concept, based on the reversible interaction of hard-acid surfaces with soft bases, hard-base surfaces with soft acids, or vice versa, corresponds 1) to the inverse of the HSAB concept and 2) to the selection of a combination of semiconductor interface and analyte materials, which can be used to direct a physisorbed vs chemisorbed interaction. The technology, implemented on nanopore coated porous silicon micropores, results in the coupling of acid-base chemistry with the depletion or enhancement of majority carriers in an extrinsic semiconductor. Using the inverse-HSAB (IHSAB) concept, significant and predictable changes in interface sensitivity for a variety of gases can be implemented. Nanostructured metal oxide particle depositions provide selectivity and complement a highly efficient electrical contact to a porous silicon nanopore covered microporous interface. The application of small quantities (much less than a monolayer) of nanostructured metals, metal oxides, and catalysts which focus the physisorbtive and chemisorbtive interactions of the interface, can be made to create a range of notably higher sensitivities for reversible physisorption. This is exemplified by an approach to reversible, sensitive, and selective interface responses. Nanostructured metal oxides developed from electroless gold (Au_xO), tin (SnO_2), copper (Cu_xO), and nickel (NiO) depositions, nanoalumina, and nanotitania are used to demonstrate the IHSAB concept and provide for the detection of gases, including NH_3, PH_3, CO, NO, and H_2S, in an array-based format to the sub-ppm level.
机译:提出了一种概念,该概念与硬酸基和软酸基相互作用(HSAB主导的化学吸附)相辅相成,并且与半导体界面的主导物理吸附相一致。我们创建了敏感性矩阵以及与几种基本气体的相互作用的矩阵。该概念基于硬酸表面与软碱的可逆交互作用,硬碱表面与软酸的可逆交互作用,反之亦然,基于1)对应于HSAB概念的反面,以及2)对应于半导体组合的选择界面和分析物材料,可用于指导物理吸附与化学吸附的相互作用。在纳米孔涂覆的多孔硅微孔上实施的这项技术导致酸碱化学与非本征半导体中多数载流子的耗尽或增强耦合。使用逆HSAB(IHSAB)概念,可以实现各种气体的界面灵敏度的显着且可预测的变化。纳米结构的金属氧化物粒子沉积可提供选择性,并与多孔硅纳米孔覆盖的微孔界面的高效电接触互补。可以进行少量(远远少于单层)纳米结构金属,金属氧化物和催化剂的应用,这些金属,金属氧化物和催化剂着重于界面的物理吸附和化学吸附相互作用,从而为可逆的物理吸附产生了一系列明显更高的灵敏度。这以可逆,敏感和选择性界面响应的方法为例。由化学镀金(Au_xO),锡(SnO_2),铜(Cu_xO)和镍(NiO)沉积物,纳米氧化铝和纳米二氧化钛开发的纳米结构金属氧化物用于证明IHSAB概念并提供对NH_3, PH_3,CO,NO和H_2S,以基于阵列的格式显示为亚ppm级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号