...
首页> 外文期刊>Hormones and behavior >Epigenomic communication systems in humans and honey bees: from molecules to behavior.
【24h】

Epigenomic communication systems in humans and honey bees: from molecules to behavior.

机译:人类和蜜蜂的表观基因组通信系统:从分子到行为。

获取原文
获取原文并翻译 | 示例
           

摘要

A 2010 Nature editorial entitled "Time for the Epigenome" trumpets the appearance of the International Human Epigenome Consortium and likens it to Biology's equivalent of the Large Hadron Collider. It strongly endorses the viewpoint that selective modifications of "marks" on DNA and histones constitute the crucial codes of life, a proposition which is hotly contested (Ptashne et al., in 2010). This proposition reflects the current mindset that DNA and histone modifications are the prime movers in gene regulation during evolution. This claim is perplexing, since the well characterized organisms, Drosophila melanogaster and Caenorhabditis elegans, lack methylated DNA "marks" and the DNA methytransferase enzymology. Despite their complete absence, D. melanogaster nevertheless has extensive gene regulatory networks which drive sophisticated development, gastrulation, migration of germ cells and yield a nervous system with significant neural attributes. In stark contrast, the honey bee Apis mellifera deploys its human-type DNA methyltransferase enzymology to "mark" its DNA and it too has sophisticated development. What roles therefore is DNA methylation playing in different animals? The honey bee brings a fresh perspective to this question. Its combinatorial chemistry of pheromones, tergal and cuticular exudates provide an exquisite communication system between thousands of individuals. The development of queen and worker is strictly controlled by differential feeding of royal jelly and their adult behaviors are accompanied by epigenomic changes. Their interfaces with different "environments" are extensive, allowing an evaluation of the roles of epigenomes in behavior in a natural environment, in the space of a few weeks, and at requisite levels of experimental rigor.
机译:2010年《自然》杂志的社论标题为“表观基因组的时间”大肆宣扬了国际人类表观基因组联合会的出现,并将其比作生物学上与大型强子对撞机相当的生物。它强烈支持这样一种观点,即DNA和组蛋白上的“标记”的选择性修饰构成了生命的关键代码,这一命题备受争议(Ptashne等人,2010年)。这一主张反映了当前的观念,即DNA和组蛋白修饰是进化过程中基因调控的主要推动力。这种说法令人困惑,因为特征充分的有机体果蝇和秀丽隐杆线虫缺乏甲基化的DNA“标记”和DNA甲基转移酶。尽管完全不存在,但黑腹果蝇仍具有广泛的基因调控网络,可驱动复杂的发育,胃形成,生殖细胞迁移并产生具有重要神经属性的神经系统。与之形成鲜明对比的是,蜜蜂Apis mellifera运用其人类型DNA甲基转移酶来“标记”其DNA,并且它也具有复杂的发展。因此,DNA甲基化在不同动物中起什么作用?蜜蜂为这个问题带来了新的视角。它的信息素,三倍体和表皮渗出液的组合化学为成千上万的个体之间提供了一个精致的交流系统。皇后和工人的发育受到蜂王浆的不同喂养的严格控制,其成年行为伴随表观基因组变化。它们与不同“环境”的接口是广泛的,从而可以在几个星期的时间里和在必要的实验严格水平下评估表观基因组在自然环境中的行为中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号