...
首页> 外文期刊>Chemical geology >Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation
【24h】

Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation

机译:酸性硫氧杆菌氧化实验室黄铜矿:氧和硫同位素分馏

获取原文
获取原文并翻译 | 示例
           

摘要

Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (delta O-18(H2O)) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O-2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 +/- 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate-water oxygen isotope fractionation, epsilon O-18(SO4-H2O), of similar to 3.8%. for the anaerobic experiments. Aerobic oxidation produced apparent epsilon(SO4)-(H2O) values (6.4%.) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O-2 into sulfate. delta S-34(SO4) values are similar to 4%. lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in delta S-34(SO4) of similar to-1.5 +/- 0.2%. was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions.
机译:进行实验室实验以模拟在不存在或存在细菌氧化铁硫杆菌的厌氧和好氧条件下黄铜矿的氧化。使用3种不同的水氧同位素值(δO-18(H2O))进行了实验,从而可以评估在不同起始条件下达到平衡或稳态同位素分馏的方法。在好氧实验中,可以清楚地分辨出溶解的O-2和水衍生的氧对黄铜矿氧化形成的溶解硫酸盐的贡献。黄铜矿的需氧氧化表明,在生物学实验中,水氧有93 +/- 1%掺入到所得的硫酸盐中。厌氧实验显示水氧结合到硫酸盐中的百分比相似,但变化更大。实验还允许确定硫酸盐-水氧同位素分馏,εO-18(SO4-H2O),近似为3.8%。用于厌氧实验。有氧氧化产生的表观ε(SO4)-(H2O)值比无氧实验高(6.4%),这可能是由于溶解的O-2进一步掺入了硫酸盐。 δS-34(SO4)值接近4%。在黄铜矿的厌氧氧化过程中比母体硫化物矿物低,非生物和生物过程之间没有显着差异。对于有氧实验,δS-34(SO4)中的少量消耗约为-1.5 +/- 0.2%。被观察到的生物学实验。在好氧条件下氧化过程中沉淀的固体少于厌氧条件下沉淀的固体,这可能解释了在这些对比条件下观察到的硫同位素分馏差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号