首页> 外文期刊>Journal of Applied Polymer Science >Simulation of Injection-Compression-Molding Process.II.Influence of Process Characteristics on Part Shrinkage
【24h】

Simulation of Injection-Compression-Molding Process.II.Influence of Process Characteristics on Part Shrinkage

机译:注射压缩成型过程的模拟II。工艺特性对零件收缩的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A numerical algorithm is developed to simulate the injection-compression molding (ICM)process.A Hele-Shaw fluid-flow model combined with a modified control-volume/finite-element method is implemiented to predict the melt-front advancement and the distributions of pressure, temperature, and flow velocity dynamically during the injection melt filling,mompression melt filling,and postfilling stages of the entire process.Part volumetric shrinkage was then investigated by tracing the thermal-mechanical history of the polymer melt via a path display in the pressure-volume-temperature (PVT)diagram during the entire process.Influence of the process parameters including compression speed, switch time from injection to compression, compression stroke, and part thickness on part shrinkage were understood through simulations of a disk part. The simulated results were also compared with those required by conventional injection molding (CIM).It was found that ICM not only shows a significant effect on reducing part shrinkage but also provides much more uniform shrinkage within the whole part as compared with CIM.Although using a higher switch time,lower compression speed,and higher compression stroke may result in a lower molding pressure, however, they do not show an apparent effect on part shrinkage once the compression pressure is the same in the compression-holding stage.However, using a lower switch time, higher compression speed, and lower compression stroke under the samer compression pressure in the postfilling stage will result in an improvement in shrinkage reduction due to the melt-temperature effect introduced in the end of the filling stage.
机译:开发了一种数值算法来模拟注压成型(ICM)过程。无法用Hele-Shaw流体模型与改进的控制量/有限元方法相结合来预测熔体前沿发展和熔体前沿分布在整个过程的注料熔体填充,模压熔体填充和后填充阶段动态地改变压力,温度和流速。然后通过在压力中通过路径显示跟踪聚合物熔体的热力学历史来研究部分体积收缩率整个过程中的体积温度(PVT)图表。通过盘形零件的模拟可以了解过程参数的影响,包括压缩速度,从注射到压缩的切换时间,压缩冲程以及零件厚度对零件收缩率的影响。仿真结果也与常规注塑成型(CIM)进行了比较,发现与CIM相比,ICM不仅在减少零件收缩方面显示出显着效果,而且在整个零件中提供了均匀得多的收缩率。较高的切换时间,较低的压缩速度和较高的压缩冲程可能会导致较低的成型压力,但是,一旦压缩保持阶段中的压缩压力相同,它们就不会对零件收缩产生明显的影响。在后填充阶段中,在相同的压缩压力下,较低的切换时间,较高的压缩速度和较低的压缩冲程将由于在填充阶段结束时引入的熔体温度效应而导致收缩减少的改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号