首页> 外文期刊>Journal of athletic training >The interaction of trunk-load and trunk-position adaptations on knee anterior shear and hamstrings muscle forces during landing.
【24h】

The interaction of trunk-load and trunk-position adaptations on knee anterior shear and hamstrings muscle forces during landing.

机译:着陆过程中躯干负荷和躯干位置适应在膝盖前剪切力和绳肌上的相互作用。

获取原文
获取原文并翻译 | 示例
           

摘要

CONTEXT: Because anterior cruciate ligament (ACL) injuries can occur during deceleration maneuvers, biomechanics research has been focused on the lower extremity kinetic chain. Trunk mass and changes in trunk position affect lower extremity joint torques and work during gait and landing, but how the trunk affects knee joint and muscle forces is not well understood. OBJECTIVE: To evaluate the effects of added trunk load and adaptations to trunk position on knee anterior shear and knee muscle forces in landing. DESIGN: Crossover study. SETTING: Controlled laboratory environment. PATIENTS OR OTHER PARTICIPANTS: Twenty-one participants (10 men: age = 20.3 +/- 1.15 years, height = 1.82 +/- 0.04 m, mass = 78.2 +/- 7.3 kg; 11 women: age = 20.0 +/- 1.10 years, height = 1.72 +/- 0.06 m, mass = 62.3 +/- 6.4 kg). INTERVENTION(S): Participants performed 2 sets of 8 double-leg landings under 2 conditions: no load and trunk load (10% body mass). Participants were categorized into one of 2 groups based on the kinematic trunk adaptation to the load: trunk flexor or trunk extensor. MAIN OUTCOME MEASURE(S): We estimated peak and average knee anterior shear, quadriceps, hamstrings, and gastrocnemius forces with a biomechanical model. RESULTS: We found condition-by-group interactions showing that adding a trunk load increased peak (17%) and average (35%) knee anterior shear forces in the trunk-extensor group but did not increase them in the trunk-flexor group (peak: F(1,19) = 10.56, P = .004; average: F(1,19) = 9.56, P = .006). We also found a main effect for condition for quadriceps and gastrocnemius forces. When trunk load was added, peak (6%; F(1,19) = 5.52, P = .030) and average (8%; F(1,19) = 8.83, P = .008) quadriceps forces increased and average (4%; F(1,19) = 4.94, P = .039) gastrocnemius forces increased, regardless of group. We found a condition-by-group interaction for peak (F(1,19) = 5.16, P = .035) and average (F(1,19) = 12.35, P = .002) hamstrings forces. When trunk load was added, average hamstrings forces decreased by 16% in the trunk-extensor group but increased by 13% in the trunk-flexor group. CONCLUSIONS: Added trunk loads increased knee anterior shear and knee muscle forces, depending on trunk adaptation strategy. The trunk-extensor adaptation to the load resulted in a quadriceps-dominant strategy that increased knee anterior shear forces. Trunk-flexor adaptations may serve as a protective strategy against the added load. These findings should be interpreted with caution, as only the face validity of the biomechanical model was assessed.
机译:背景:由于在减速操作过程中可能会发生前交叉韧带(ACL)损伤,因此生物力学研究一直集中在下肢动力学链上。躯干的质量和躯干位置的变化会影响下肢关节的扭矩,并在步态和着陆时起作用,但人们对躯干如何影响膝关节和肌肉力量的了解尚不清楚。目的:评估增加的躯干负荷和躯干位置适应对着陆时膝前剪切力和膝部肌肉力的影响。设计:交叉研究。地点:受控的实验室环境。患者或其他参与者:21名参与者(10名男性:年龄= 20.3 +/- 1.15岁,身高= 1.82 +/- 0.04 m,体重= 78.2 +/- 7.3公斤; 11名女性:年龄= 20.0 +/- 1.10年,身高= 1.72 +/- 0.06 m,质量= 62.3 +/- 6.4 kg)。干预:参与者在2种条件下进行了2组8次双腿着陆:无负荷和躯干负荷(体重的10%)。根据运动躯干对负荷的适应程度,将参与者分为两组:躯干屈肌或躯干伸肌。主要观察指标:我们用生物力学模型估算了峰值和平均膝关节前剪切力,股四头肌,绳肌和腓肠肌力。结果:我们发现各组之间的相互作用表明,增加躯干负荷可增加躯干-伸肌组的峰值(17%)和平均(35%)膝盖前剪切力,而在躯干-屈肌组中则没有增加(峰值:F(1,19)= 10.56,P = 0.004;平均值:F(1,19)= 9.56,P = 0.006)。我们还发现了股四头肌和腓肠肌力状况的主要影响因素。当增加躯干负荷时,股四头肌力量增加,平均值(6%; F(1,19)= 5.52,P = .030)和平均值(8%; F(1,19)= 8.83,P = .008) (4%; F(1,19)= 4.94,P = .039)腓肠肌力增加,与组无关。我们发现峰值(F(1,19)= 5.16,P = .035)和平均值(F(1,19)= 12.35,P = .002)ham绳肌力的逐组交互作用。当增加躯干负荷时,躯干伸肌组的平均绳肌力量降低了16%,而躯干屈肌组的平均肌筋力量增加了13%。结论:增加躯干负荷会增加膝盖前剪切力和膝盖肌肉力量,具体取决于躯干适应策略。躯干-伸肌对负荷的适应导致以股四头肌为主导的策略,增加了膝关节前剪切力。躯干屈肌适应可以作为抵抗增加负荷的保护策略。这些发现应谨慎解释,因为仅评估了生物力学模型的面部有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号