首页> 外文期刊>Journal of Biomechanics >In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury.
【24h】

In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury.

机译:在脑外伤动物模型中快速变形和应变的体内成像。

获取原文
获取原文并翻译 | 示例
           

摘要

In traumatic brain injury (TBI) rapid deformation of brain tissue leads to axonal injury and cell death. In vivo quantification of such fast deformations is extremely difficult, but important for understanding the mechanisms of degeneration post-trauma and for development of numerical models of injury biomechanics. In this paper, strain fields in the brain of the perinatal rat were estimated from data obtained in vivo during rapid indentation. Tagged magnetic resonance (MR) images were obtained with high spatial (0.2 mm) and temporal (3.9 ms) resolution by gated image acquisition during and after impact. Impacts were repeated either 64 or 128 times to obtain images of horizontal and vertical tag lines in coronal and sagittal planes. Strain fields were estimated by harmonic phase (HARP) analysis of the tagged images. The original MR data was filtered and Fourier-transformed to obtain HARP images, following a method originally developed by Osman et al. (IEEE Trans. Med. Imaging 19(3) (2000) 186). The displacements of material points were estimated from intersections of HARP contours and used to generate estimates of the deformation gradient and Lagrangian strain tensors. Maximum principal Lagrangian strains of >0.20 at strain rates >40/s were observed during indentations of 2 mm depth and 21 ms duration.
机译:在创伤性脑损伤(TBI)中,脑组织的快速变形会导致轴突损伤和细胞死亡。在体内对这种快速变形进行定量非常困难,但是对于理解创伤后变性的机理以及对于损伤生物力学数值模型的开发而言,非常重要。在本文中,围产期大鼠大脑中的应变场是根据快速压入过程中从体内获得的数据估算的。通过在撞击期间和撞击之后的门控图像采集,可以以高空间(0.2 mm)和时间(3.9 ms)分辨率获得标记磁共振(MR)图像。重复撞击64或128次,以获取冠状和矢状平面中水平和垂直标签线的图像。通过对标记图像进行谐波相位(HARP)分析来估计应变场。按照Osman等人最初开发的方法,对原始MR数据进行过滤和傅里叶变换以获得HARP图像。 (IEEE Trans.Med.Imaging 19(3)(2000)186)。从HARP轮廓的交点估计材料点的位移,并将其用于生成变形梯度和拉格朗日应变张量的估计。在压痕深度为2 mm且持续时间为21 ms的情况下,以> 40 / s的应变速率观察到最大的最大拉格朗日应变> 0.20。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号