...
首页> 外文期刊>Journal of Biomechanics >Modelling the mechanical response of elastin for arterial tissue.
【24h】

Modelling the mechanical response of elastin for arterial tissue.

机译:模拟弹性蛋白对动脉组织的机械反应。

获取原文
获取原文并翻译 | 示例
           

摘要

We compare two constitutive models proposed to model the elastinous constituents of an artery. Holzapfel and Weizsacker [1998. Biomechanical behavior of the arterial wall and its numerical characterization. Comput. Biol. Med. 28, 377-392] attribute a neo-Hookean response, i.e. Psi=c(I(1)-3)), to the elastin whilst Zulliger et al. [2004a. A strain energy function for arteries accounting for wall composition and structure. J. Biomech. 37, 989-1000] propose Psi=c(I(1)-3)(3/2). We analyse these constitutive models for two specific cases: (i) uniaxial extension of an elastinous sheet; (ii) inflation of a cylindrical elastinous membrane. For case (i) we illustrate the functional relationships between: (a) the Cauchy stress (CS) and the Green-Lagrange (GL) strain; (b) the tangent modulus (gradient of the CS-GL strain curve) and linearised strain. The predicted mechanical responses are compared with recent uniaxial extension tests on elastin [Gundiah, N., Ratcliffe, M.B., Pruitt, L.A., 2007. Determination of strain energy function for arterial elastin: experiments using histology and mechanical tests. J. Biomech. 40, 586-594; Lillie, M.A., Gosline, J.M., 2007a. Limits to the durability of arterial elastic tissue. Biomaterials 28, 2021-2031; 2007b. Mechanical properties of elastin along the thoracic aorta in the pig. J. Biomech. 40, 2214-2221]. The neo-Hookean model accurately predicts the mechanical response of a single elastin fibre. However, it is unable to accurately capture the mechanical response of arterial elastin, e.g. the initial toe region of arterial elastin (if it exists) or the gradual increase in modulus of arterial elastin that occurs as it is stretched. The alternative constitutive model (n=32) yields a nonlinear mechanical response that departs from recent uniaxial test data mentioned above, for the same stretch range. For case (ii) we illustrate the pressure-circumferential stretch relationships and the gradients of the pressure-circumferential stretch curves: significant qualitative differences are observed. For the neo-Hookean model, the gradient decreases rapidly to zero, however, for n=32, the gradient decreases more gradually to a constant value. We conclude that whilst the neo-Hookean model has limitations, it appears to capture more accurately the mechanical response of elastin.
机译:我们比较了两个用来模拟动脉弹性成分的本构模型。 Holzapfel和Weizsacker [1998年。动脉壁的生物力学行为及其数值表征。计算生物学中28,377-392]将新霍克式的反应归因于弹性蛋白,而Zulliger等人则将其归为弹性蛋白(Psi = c(I(1)-3))。 [2004a。动脉的应变能函数说明壁的组成和结构。 J.生物机械。 37,989-1000]提出Psi = c(I(1)-3)(3/2)。我们针对两种特定情况分析这些本构模型:(i)弹性片材的单轴延伸; (ii)圆柱形弹性膜的膨胀。对于情况(i),我们说明:(a)柯西应力(CS)和格林-拉格朗日(GL)应变之间的功能关系; (b)切线模量(CS-GL应变曲线的梯度)和线性应变。将预测的机械响应与最近在弹性蛋白上的单轴延伸测试进行了比较[Gundiah,N.,Ratcliffe,M.B.,Pruitt,L.A.,2007。确定动脉弹性蛋白的应变能函数:使用组织学和机械测试的实验。 J.生物机械。 40,586-594; Lillie,M.A.,Gosline,J.M.,2007a。限制了动脉弹性组织的耐用性。生物材料28,2021-2031; 2007b。猪沿胸主动脉的弹性蛋白的机械性能。 J.生物机械。 40,2214-2221]。 Neo-Hookean模型可以准确预测单个弹性纤维的机械响应。但是,它不能准确地捕捉到动脉弹性蛋白的机械反应,例如。动脉弹性蛋白的初始脚趾区域(如果存在)或在拉伸过程中发生的动脉弹性蛋白模量的逐渐增加。对于相同的拉伸范围,替代性本构模型(n = 32)产生非线性机械响应,该响应不同于上述最新的单轴测试数据。对于情况(ii),我们说明了压力-周向拉伸关系和压力-周向拉伸曲线的梯度:观察到明显的质量差异。对于新霍克模型,梯度迅速减小到零,但是,对于n = 32,梯度逐渐减小到恒定值。我们得出的结论是,尽管新霍克模型具有局限性,但它似乎可以更准确地捕获弹性蛋白的机械响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号