...
首页> 外文期刊>Journal of Biomechanics >Pulsatile flow in a coronary artery using multiphase kinetic theory.
【24h】

Pulsatile flow in a coronary artery using multiphase kinetic theory.

机译:使用多相动力学理论研究冠状动脉中的搏动流。

获取原文
获取原文并翻译 | 示例
           

摘要

Pulsatile flow in a model of a right coronary artery (RCA) was previously modeled as a single-phase fluid and as a two-phase fluid using experimental rheological data for blood as a function of hematocrit and shear rate. Here we present a multiphase kinetic theory model which has been shown to compute correctly the viscosity of red blood cells (RBCs) and their migration away from vessel walls: the Fahraeus-Lindqvist effect. The computed RBC viscosity decreases with shear rate and vessel size, consistent with measurements. The pulsatile computations were performed using a typical cardiac waveform until a limit cycle was well established. The RBC volume fractions, shear stresses, shear stress gradients, granular temperatures, viscosities, and phase velocities varied with time and position during each cardiac cycle. Steady-state computations were also performed and were found to compare well with time-averaged transient results. The wall shear stress and wall shear stress gradients (both spatial and temporal) were found to be highest on the inside area of maximum curvature. Potential atherosclerosis sites are identified using these computational results.
机译:先前使用血液流变比容和剪切速率的实验流变学数据,将右冠状动脉(RCA)模型中的搏动流建模为单相流体和两相流体。在这里,我们提供了一个多相动力学理论模型,该模型已被证明可以正确计算红细胞(RBC)的粘度及其从血管壁的迁移:Fahraeuus-Lindqvist效应。计算得出的RBC粘度随剪切速率和容器尺寸的减小而减小,与测量结果一致。使用典型的心脏波形进行搏动计算,直到确定了极限循环为止。在每个心动周期中,RBC的体积分数,切应力,切应力梯度,颗粒温度,粘度和相速度随时间和位置而变化。还进行了稳态计算,并发现其与时间平均的瞬态结果具有很好的比较。发现在最大曲率的内部区域,壁切应力和壁切应力梯度(在空间和时间上)最高。使用这些计算结果可以识别潜在的动脉粥样硬化部位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号