...
首页> 外文期刊>Journal of Biomechanics >Modular control of human walking: a simulation study.
【24h】

Modular control of human walking: a simulation study.

机译:人体步行的模块化控制:仿真研究。

获取原文
获取原文并翻译 | 示例
           

摘要

Recent evidence suggests that performance of complex locomotor tasks such as walking may be accomplished using a simple underlying organization of co-active muscles, or "modules", which have been assumed to be structured to perform task-specific biomechanical functions. However, no study has explicitly tested whether the modules would actually produce the biomechanical functions associated with them or even produce a well-coordinated movement. In this study, we generated muscle-actuated forward dynamics simulations of normal walking using muscle activation modules (identified using non-negative matrix factorization) as the muscle control inputs to identify the contributions of each module to the biomechanical sub-tasks of walking (i.e., body support, forward propulsion, and leg swing). The simulation analysis showed that a simple neural control strategy involving five muscle activation modules was sufficient to perform the basic sub-tasks of walking. Module 1 (gluteus medius, vasti, and rectus femoris) primarily contributed to body support in early stance while Module 2 (soleus and gastrocnemius) contributed to both body support and propulsion in late stance. Module 3 (rectus femoris and tibialis anterior) acted to decelerate the leg in early and late swing while generating energy to the trunk throughout swing. Module 4 (hamstrings) acted to absorb leg energy (i.e., decelerate it) in late swing while increasing the leg energy in early stance. Post-hoc analysis revealed an additional module (Module 5: iliopsoas) acted to accelerate the leg forward in pre- and early swing. These results provide evidence that the identified modules can act as basic neural control elements that generate task-specific biomechanical functions to produce well-coordinated walking.
机译:最近的证据表明,复杂的运动任务(例如步行)的执行可以使用共同的肌肉或“模块”的简单基础组织来完成,这些组织被假定为执行特定任务的生物力学功能。然而,没有研究明确测试这些模块是否会真正产生与其相关的生物力学功能,甚至产生协调一致的运动。在这项研究中,我们使用肌肉激活模块(使用非负矩阵分解确定)作为肌肉控制输入,以识别每个模块对行走的生物力学子任务的贡献,从而生成了正常行走的肌肉致动正向动力学模拟。 ,身体支撑,向前推进和腿部摆动)。仿真分析表明,涉及五个肌肉激活模块的简单神经控制策略足以执行基本的步行子任务。第1单元(中臀肌,股大肌和股直肌)主要在早期站立时为身体提供支持,而第2单元(比目鱼和腓肠肌)在后期站立时同时为身体支持和推进做出了贡献。模块3(股直肌和胫骨前段)在早期和晚期摆动中使腿减速,同时在整个摆动过程中为躯干产生能量。模块4((绳肌)的作用是在挥杆后期吸收腿部能量(即使其减速),同时在早期姿势中增加腿部能量。事后分析揭示了一个额外的模块(模块5:op肌),用于在挥杆前和挥杆早期使腿向前加速。这些结果提供了证据,表明所确定的模块可以充当基本的神经控制元件,从而产生特定任务的生物力学功能,以产生协调一致的步行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号