...
首页> 外文期刊>Journal of biomedical materials research. Part B, Applied biomaterials. >VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.
【24h】

VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

机译:掺有VEGF的仿生聚乳酸交酯乙交酯烧结微球支架,用于骨组织工程。

获取原文
获取原文并翻译 | 示例
           

摘要

Regenerative engineering approaches utilizing biomimetic synthetic scaffolds provide alternative strategies to repair and restore damaged bone. The efficacy of the scaffolds for functional bone regeneration critically depends on their ability to induce and support vascular infiltration. In the present study, three-dimensional (3D) biomimetic poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds were developed by sintering together PLAGA microspheres followed by nucleation of minerals in a simulated body fluid. Further, the angiogenic potential of vascular endothelial growth factor (VEGF)-incorporated mineralized PLAGA scaffolds were examined by monitoring the growth and phenotypic expression of endothelial cells on scaffolds. Scanning electron microscopy micrographs confirmed the growth of bone-like mineral layers on the surface of microspheres. The mineralized PLAGA scaffolds possessed interconnectivity and a compressive modulus of 402 ± 61 MPa and compressive strength of 14.6 ± 2.9 MPa. Mineralized scaffolds supported the attachment and growth and normal phenotypic expression of endothelial cells. Further, precipitation of apatite layer on PLAGA scaffolds resulted in an enhanced VEGF adsorption and prolonged release compared to nonmineralized PLAGA and, thus, a significant increase in endothelial cell proliferation. Together, these results demonstrated the potential of VEGF-incorporated biomimetic PLAGA sintered microsphere scaffolds for bone tissue engineering as they possess the combined effects of osteointegrativity and angiogenesis. ? 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.
机译:利用仿生合成支架的再生工程方法提供了修复和恢复受损骨的替代策略。支架对功能性骨再生的功效主要取决于其诱导和支持血管浸润的能力。在本研究中,通过将PLAGA微球烧结在一起,然后在模拟的体液中使矿物质成核,从而开发了三维(3D)仿生聚丙交酯-乙交酯共聚物(PLAGA)烧结微球支架。此外,通过监测支架上内皮细胞的生长和表型表达来检查掺入血管内皮生长因子(VEGF)的矿化PLAGA支架的血管生成潜力。扫描电子显微镜显微照片证实了微球表面上骨样矿物质层的生长。矿化的PLAGA脚手架具有互连性,压缩模量为402±61 MPa,抗压强度为14.6±2.9 MPa。矿化的支架支持内皮细胞的附着和生长以及正常表型表达。此外,与未矿化的PLAGA相比,PLAGA支架上的磷灰石层沉淀导致VEGF吸附增强,释放时间延长,因此内皮细胞增殖显着增加。总之,这些结果证明了掺入VEGF的仿生PLAGA烧结微球支架在骨组织工程中的潜力,因为它们具有骨整合性和血管生成的综合作用。 ? 2012 Wiley Periodicals,Inc. J Biomed Mater Res B部分:Appl Biomater,2012年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号