...
首页> 外文期刊>Journal of biomedical materials research. Part B, Applied biomaterials. >Control of in vivo microvessel ingrowth by modulation of biomaterial local architecture and chemistry
【24h】

Control of in vivo microvessel ingrowth by modulation of biomaterial local architecture and chemistry

机译:通过调节生物材料的局部结构和化学作用来控制体内微血管向内生长

获取原文
获取原文并翻译 | 示例
           

摘要

We developed a method for controlling local architecture and chemistry simultaneously in biomaterial implants to control microvessel ingrowth in vivo. Porous polypropylene disks (5 mm in diameter and 40 mu m thick) were plasma-coated with a fluoropolymer and then laser-drilled with 50-mu m-diameter holes through their thickness. We then oxidized the disks to create hydroxyl functionality on the exposed polypropylene (inside the holes). Acrylamide was grafted to the hydroxyl groups through polymerization in the presence of activating ceric ions. Staining with toluidine blue O demonstrated that grafting occurred only inside the holes. We used the Hoffman degradation reaction to convert the amide groups of acrylamide to amine groups, and then we used ethylene glycol diglycidyl ether to attach biomolecules of interest inside the holes: secreted protein acidic and rich in cysteine (SPARC) peptide Lys-Gly-His-Lys (KGHK; angiogenic), thrombospondin-2 (TSP; antiangiogenic), or albumin (rat; neutral). In vivo testing in a rat subcutaneous dorsum model for a 3-week interval demonstrated a greater vessel surface area (p = 0.032) and a greater number of vessels (p = 0.043) in tissue local to the holes with KGHK-immobilized disks than with TSP-immobilized disks. However, differences between KGHK-immobilized and albumin-immobilized disks were less significant (p = 0.120 and p = 0.289 for the vessel surface area and number of vessels, respectively). The developed methods have potential applications in biomaterial design applications for which selective neovascularization is desired.
机译:我们开发了一种在生物材料植入物中同时控制局部结构和化学的方法,以控制体内微血管的向内生长。用氟聚合物对多孔聚丙烯圆盘(直径5毫米,厚40微米)进行等离子喷涂,然后在整个厚度上用直径50微米的孔进行激光打孔。然后,我们将圆盘氧化以在暴露的聚丙烯(孔内)上产生羟基官能团。在活化的铈离子存在下,丙烯酰胺通过聚合反应接枝到羟基上。用甲苯胺蓝O染色表明接枝仅发生在孔内。我们使用霍夫曼降解反应将丙烯酰胺的酰胺基转化为胺基,然后使用乙二醇二缩水甘油醚将感兴趣的生物分子附着在孔内:酸性分泌蛋白和富含半胱氨酸(SPARC)肽Lys-Gly-His -赖氨酸(KGHK;血管生成),血小板反应蛋白2(TSP;抗血管生成)或白蛋白(大鼠;中性)。在大鼠皮下背部模型中进行的为期3周的体内测试显示,与使用KGHK固定盘相比,使用KGHK固定的椎间盘在孔局部组织中的血管表面积更大(p = 0.032),并且血管数目更大(p = 0.043) TSP固定的磁盘。但是,KGHK固定盘和白蛋白固定盘之间的差异较小(分别针对血管表面积和血管数目,p = 0.120和p = 0.289)。所开发的方法在需要选择性新血管形成的生物材料设计应用中具有潜在的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号