...
首页> 外文期刊>Journal of Chemical Technology & Biotechnology >A hollow fibermembrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: A process engineering approach
【24h】

A hollow fibermembrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: A process engineering approach

机译:一种中空纤维膜光生物反应器,用于从燃烧气体中隔离二氧化碳并进行废水处理:一种工艺工程方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

BACKGROUND: In the presence of light, micro-algae convert CO2 and nutrients to biomass that can be used as a biofuel. In closed photo-bioreactors, however, light and CO2 availability often limit algae production and can be difficult to control using traditional diffuser systems. In this research, a hollow fiber membrane photo-bioreactor (HFMPB) was investigated to: (1) increase the interfacial contact area available for gas transfer, (2) treat high nutrient strength (412 mg NO3 -N L1)wastewater, and (3) produce algal biomass that can be used as a biofuel.RESULTS: A bench scale HFMPB was inoculated with Spirulina platensis and operated with a 2-15% CO2 supply. Amass transfer modelwas developed and found to be a good tool to estimateCO2 mass transfer coefficients at varying liquid velocities. Overall mass transfer coefficients were 1.8 ×106, 2.8 ×106, 5.6 ×106m s1 at Reynolds numbers of 38, 63, and 138, respectively. A maximum CO2 removal efficiency of 85% was observed at an inlet CO2 concentration of 2% and a gas residence time (membrane-lumen) of 8.6 s. The corresponding algal biomass concentrations and NO3 removal efficiencies were 2131 mg L1 and 68%, respectively. CONCLUSION: The results show that the combination of CO2 sequestration, wastewater treatment and biofuel production in an HFMPB is a promising alternative for greenhouse gas mitigation.
机译:背景:在光照下,微藻将二氧化碳和养分转化为可以用作生物燃料的生物质。然而,在封闭的光生物反应器中,光和二氧化碳的可利用性经常限制藻类的产生,并且可能难以使用传统的扩散器系统进行控制。在这项研究中,对中空纤维膜光生物反应器(HFMPB)进行了研究,以:(1)增加可用于气体转移的界面接触面积,(2)处理高营养强度(412 mg NO3-N L1)废水,和( 3)生产可用作生物燃料的藻类生物量。结果:台式规模HFMPB接种了螺旋藻,并使用2-15%的CO2进行操作。开发了Amass转移模型,发现该模型是估算不同液体速度下CO2传质系数的好工具。雷诺数分别为38、63和138时,总传质系数分别为1.8×106、2.8×106、5.6×106m s1。在2%的入口CO2浓度和8.6 s的气体停留时间(膜流明)下,观察到最大CO2去除效率为85%。相应的藻类生物质浓度和NO3去除效率分别为2131 mg L1和68%。结论:结果表明,将HFMPB中的CO2隔离,废水处理和生物燃料生产相结合是缓解温室气体的有希望的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号