首页> 外文期刊>Journal of Colloid and Interface Science >Molecular dynamic simulation of platinum heater and associated nano-scale liquid argon film evaporation and colloidal adsorption characteristics
【24h】

Molecular dynamic simulation of platinum heater and associated nano-scale liquid argon film evaporation and colloidal adsorption characteristics

机译:铂加热器及其相关的纳米级液氩膜蒸发和胶体吸附特性的分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A novel 'fluid-wall thermal equilibrium model' for the wall-fluid heat transfer boundary condition has been developed in this paper to capture the nano-scale physics of transient phase transition of a thin liquid argon film on a heated platinum surface and the eventual colloidal adsorption phenomenon as the evaporation is diminishing using molecular dynamics. The objective of this work is to provide microscopic characterizations of the dynamic thermal energy transport mechanisms during the liquid film evaporation and also the resulting non-evaporable colloidal adsorbed liquid layer at the end of the evaporation process. A nanochannel is constructed of platinum (Pt) wall atoms with argon as the working fluid. The proposed model is validated by heating liquid argon between two Pt walls and comparing the thermal conductivity and change in internal energy to thermodynamic properties of argon. Later on, phase change process is studied by simulating evaporation of a thin liquid argon film on a Pt wall using the proposed model. Gradual evaporation of the liquid film occurs although the film does not vaporize completely. An ultra-thin layer of liquid argon is noticed to have "adsorbed" on the platinum surface. An analysis similar to the theoretical study by Hamaker (1937) is performed for the non-evaporating film and the value of the Hamaker-type constant falls in the typical range. This analysis is done to quantify the non-evaporating film with an attempt to use molecular dynamics simulation results in continuum mechanics. (C) 2008 Elsevier Inc. All rights reserved.
机译:本文针对壁-流体传热边界条件开发了一种新颖的“流体-壁热平衡模型”,以捕捉加热铂表面上液态氩薄膜的瞬态相变的纳米尺度物理学,并最终胶体吸附现象随着蒸发的进行而利用分子动力学来减小。这项工作的目的是在液膜蒸发过程中提供动态热能传输机制的微观表征,并在蒸发过程结束时提供由此产生的不可蒸发的胶体吸附液层。纳米通道由铂(Pt)壁原子和氩作为工作流体构成。通过在两个Pt壁之间加热液态氩并比较导热系数和内部能量变化与氩的热力学性质,验证了所提出的模型。随后,通过使用所提出的模型模拟在Pt壁上的液态氩薄膜的蒸发来研究相变过程。尽管液膜并未完全蒸发,但液膜会逐渐蒸发。注意到液态氩的超薄层已经“吸附”在铂表面上。对非蒸发膜进行类似于Hamaker(1937)的理论研究的分析,Hamaker型常数的值落在典型范围内。进行此分析以量化非蒸发膜,以尝试在连续力学中使用分子动力学模拟结果。 (C)2008 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号